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The evolution of machine learning at scale
● Machine learning (ML) is a data hungry application

○ Large volumes of data

○ Diverse data

○ Time-sensitive data
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Server Domain

Federated learning (FL)
● Train ML models over network

○ Less network cost, no data transfer [1]
○ Server aggregates updates across clients

● Enables privacy-preserving alternatives 
○ Differentially private federated learning [2]
○ Secure aggregation [3]

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017
[2] Geyer et al. Differentially Private Federated Learning: A Client Level Perspective. NIPS 2017
[3] Bonawitz et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS 2017.

Agg.
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Federated learning (FL)
● Train ML models over network

○ Less network cost, no data transfer [1]
○ Server aggregates updates across clients

● Enables privacy-preserving alternatives 
○ Differentially private federated learning [2]
○ Secure aggregation [3]

● Enables training over non i.i.d. data settings
○ Users with disjoint data types
○ Mobile, internet of things, etc.

Server Domain

Agg.

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017
[2] Geyer et al. Differentially Private Federated Learning: A Client Level Perspective. NIPS 2017
[3] Bonawitz et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS 2017.
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Federated learning: new threat model
● The role of the client has changed significantly!

○ Previously: passive data providers

○ Now: perform arbitrary compute

Server Domain

Agg.
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Federated learning: new threat model
● The role of the client has changed significantly!

○ Previously: passive data providers

○ Now: perform arbitrary compute

● Aggregator never sees client datasets, compute outside domain

○ Difficult to validate clients in “diverse data” setting

Server Domain
Are these 
updates 
genuine?

Agg.
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Poisoning attacks
● Traditional poisoning attack: malicious training data

○ Manipulate behavior of final trained model
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Poisoning attacks
● Traditional poisoning attack: malicious training data

○ Manipulate behavior of final trained model

Old decision boundary

New decision boundary

Misclassified example

Malicious poisoning data
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Sybil-based poisoning attacks
● In federated learning: provide malicious model updates
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Sybil-based poisoning attacks
● In federated learning: provide malicious model updates

● With sybils: each account increases influence in system

○ Made worse in non-i.i.d setting

Aggregator
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E.g. Sybil-based poisoning attacks
● A 10 client, non-i.i.d MNIST setting
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E.g. Sybil-based poisoning attacks
● A 10 client, non-i.i.d MNIST setting

● Sybil attackers with mislabeled “1-7” data

○ Need at least 10 sybils?
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Our contributions
● Identify gap in existing FL defenses

○ No prior work has studied sybils in FL

● Categorize sybil attacks on FL along two dimensions:

○ Sybil objectives/targets

○ Sybil capabilities

● FoolsGold: a defense against sybil-based poisoning attacks on FL

○ Addresses targeted poisoning attacks

○ Preserves benign FL performance

○ Prevents poisoning from 99% sybil adversary
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Federated learning: sybil attacks, 
defenses and new opportunities 
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Types of attacks on FL
● Model quality: modify the performance of the trained model

○ Poisoning attacks [1], backdoor attacks [2]

● Privacy: attack the datasets of honest clients

○ Inference attacks [3]

● Utility: receive an unfair payout from the system

○ Free-riding attacks [4]

● Training inflation: inflate the resources required (new!)

○ Time taken, network bandwidth, GPU usage

[1] Fang et al. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. Usenix Security 2020.
[2] Bagdasaryan et al. How To Backdoor Federated Learning. AISTATS 2020.
[3] Melis et al. Exploiting Unintended Feature Leakage in Collaborative Learning. S&P 2019.
[4] Lin et al. Free-riders in Federated Learning: Attacks and Defenses. arXiv 2019.



28

Existing defenses for FL are limited
● Existing defenses are aggregation statistics:

○ Multi-Krum [1]

○ Bulyan [2] 

○ Trimmed Mean/Median [3]

● Require a bounded number of attackers

○ Do not handle sybil attacks

● Focus on poisoning attacks (model quality)

○ Do not handle other attacks (e.g., training inflation)

[1] Blanchard et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS 2017
[2] El Mhamdi et al. The Hidden Vulnerability of Distributed Learning in Byzantium. ICML 2018.
[3] Yin et al. Byzantine-robust distributed learning: Towards optimal statistical rates. ICML 2018.
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Existing defenses for FL
● Cannot defend against an increasing number of poisoners

[1] Blanchard et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS 2017
[2] El Mhamdi et al. The Hidden Vulnerability of Distributed Learning in Byzantium. ICML 2018.
[3] Yin et al. Byzantine-robust distributed learning: Towards optimal statistical rates. ICML 2018.
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Existing defenses for FL
● FoolsGold is robust to an increasing number of poisoners

[1] Blanchard et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS 2017
[2] El Mhamdi et al. The Hidden Vulnerability of Distributed Learning in Byzantium. ICML 2018.
[3] Yin et al. Byzantine-robust distributed learning: Towards optimal statistical rates. ICML 2018.
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Existing defenses for FL
● FoolsGold is robust to an increasing number of poisoners

[1] Blanchard et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS 2017
[2] El Mhamdi et al. The Hidden Vulnerability of Distributed Learning in Byzantium. ICML 2018.
[3] Yin et al. Byzantine-robust distributed learning: Towards optimal statistical rates. ICML 2018.

Once the number of sybils exceeds defense 
threshold, defenses are ineffective!
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Training inflation on FL
● Manipulate ML stopping criteria to ensure maximum time/usage:

○ Validation error, size of gradient norm

○ Coordinated attacks can be direct, 
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Training inflation on FL
● Manipulate ML stopping criteria to ensure maximum time/usage:

○ Validation error, size of gradient norm

○ Coordinated attacks can be direct, timed, or stealthy

Coordinated adversary can arbitrarily manipulate 
the length of federated learning process!
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Sybil strategies when attacking FL
● Attack data diversity: 

○ How common is the strategy used between sybils?

○ Identical datasets? Diverse datasets?

● Coordination: 

○ How much state do sybils share?

○ How often do sybils communicate?

● Churn: 

○ Do sybils benefit when joining/leaving system during the attack?
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● We categorize existing FL attacks based on these criteria

○ Many can be categorized by their sybil strategies

○ See discussion and table in the paper
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FoolsGold: Defending against 
sybil-based targeted poisoning attacks
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FoolsGold threat model and assumptions
● Addresses one section within table

○ Targeted poisoning attacks

○ Sybils with similar datasets

● Assume: 

○ Non i.i.d federated learning setting

○ At least one honest client in FL system

○ Server can observe all model updates

■ No secure aggregation
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FoolsGold algorithm
1. Collect model update history

from each client

2. Compute feature significance

3. Pairwise cosine similarity between clients

4. Normalize through the inverse logit function

• Ensures all weights are spread across 0-1 range

5. Reduce learning rate of contributions that are highly similar

 Effect: highly similar clients will be penalized over time
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Evaluating FoolsGold
● Attack scenario:

○ Defined source and target class attacks

○ Sybils join FL system and execute targeted poisoning

■ Uncoordinated attack with same poisoned dataset

■ Single attacker, N attackers, 99% attackers, etc.

● Datasets/models:

○ MNIST - softmax (image data)

○ VGGFace2 - Squeezenet DNN (multi-channel image data)

● See paper for more datasets and attack variants!
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Baseline results

Test Accuracy Attack Rate

MNIST No Attack 0.92 (0.91 on FL) n/a

VGGFace2 No attack 0.78 (0.75 on FL) n/a

● FoolsGold does not interfere with benign setting
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Baseline results

Test Accuracy Attack Rate

MNIST No Attack 0.92 (0.91 on FL) n/a

MNIST 5 sybils (33%) 0.91 0.001

MNIST 990 sybils (99%) 0.91 0.001

MNIST 1 sybil 0.74 0.23

VGGFace2 No attack 0.78 (0.75 on FL) n/a

VGGFace2 5 sybils (33%) 0.78 0.001

VGGFace2 1 sybil 0.62 0.44

● FoolsGold does not interfere with benign setting

● FoolsGold defends against increasing number of sybils

● Performance against single attacker is worst
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FoolsGold performs well even when i.i.d.
● How similar are model updates over VGGFace2 training process?

○ For each client/sybil, plot weights of final update
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FoolsGold performs well even when i.i.d.
● How similar are model updates over VGGFace2 training process?

○ For each client/sybil, plot weights of final update

Weights are 
positive for each 
client’s class
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FoolsGold performs well even when i.i.d.
● How similar are model updates over VGGFace2 training process?

○ For each client/sybil, plot weights of final update

Difficult to 
distinguish in 
full-i.i.d setting
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FoolsGold performs well even when i.i.d.
● How similar are model updates over VGGFace2 training process?

○ For each client/sybil, plot weights of final update

Poisoning attack 
from sybils appear 
similar

Even when more i.i.d, FoolsGold can distinguish 
between sybils and honest clients!
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Can an intelligent attacker defeat FoolsGold?
● What if the attacker is stronger?

○ They know the FoolsGold algorithm

○ They can coordinate at each iteration 

● Bypass FoolsGold by increasing dissimilarity amongst sybils

○ Modify model updates with orthogonal perturbations

○ Withhold poisoning attacks to avoid detection
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Coordinated sybils can bypass FoolsGold
● Limiting malicious model update frequency 

○ Monitor FoolsGold similarity

○ Only poison when similarity is below M

● Too often: Detected by FoolsGold (M>0.25)

● Too infrequent: Cannot overpower honest 

clients in system

● With lower M, success requires more sybils

○ Also requires estimate of honest client 

data distribution 
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The bigger picture
● FoolsGold can be defeated by increasing coordinated attackers

● Attacks extend beyond model quality attacks

● As future defenses are designed for federated learning:

○ Consider sybil capabilities when defining attacker
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Contributions
● Federated learning: new threat model

○ Adversaries perform arbitrary compute

● New attacks are possible/stronger with sybils

○ Categorize sybil strategies/capabilities

○ New training inflation attacks on FL

● FoolsGold: defending against sybil-based poisoning attacks

○ Detect sybils based on 

client similarity

Contact: clementf@andrew.cmu.edu
Our code can be found at:
https://github.com/DistributedML/FoolsGold

mailto:clementf@andrew.cmu.edu

