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Defending industrial control systems

Read sensor values 
from physical process

Inject false values

Send control commands 
to actuators

Tim
e-series

Sensors + actuators

Trained DL-based 
reconstruction model 

When an alarm is raised, can we identify 
the sensor or actuator that was attacked?
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Explainable AI (XAI) through attribution methods

Sturmfels et al. "Visualizing the Impact of Feature Attribution Baselines". Distill 2020.
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1. (How well) do prior, off-the-shelf attribution 
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3. Can we do better than prior attribution strategies?
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RQ1: Do prior attribution strategies 
work well?
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We evaluate attribution in diverse settings

• Compare a variety of anomaly-detection models [1]:
• Linear models, CNNs, RNNs, LSTMs

[1] Fung et al. "Perspectives from a comprehensive evaluation of reconstruction-based anomaly detection in ICS." ESORICS 2022.
[2] Goh et al. "A dataset to support research in the design of secure water treatment systems." CRITIS 2016.
[3] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process model,” IFAC ADCHEM, vol. 48, no. 8. 2015.
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We evaluate attribution in diverse settings

• Compare a variety of anomaly-detection models [1]:
• Linear models, CNNs, RNNs, LSTMs

• Datasets [2,3]: SWaT, WADI, TEP
• Water treatment (public datasets)
• Chemical process (modified simulator)

• Attack scenarios:
• 47 real attacks on water treatment
• 100 synthetic attacks on chemical process

• Made publicly available!

[1] Fung et al. "Perspectives from a comprehensive evaluation of reconstruction-based anomaly detection in ICS." ESORICS 2022.
[2] Goh et al. "A dataset to support research in the design of secure water treatment systems." CRITIS 2016.
[3] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process model,” IFAC ADCHEM, vol. 48, no. 8. 2015.
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• Compare model prediction to observed ICS values
• Attribute alarm to feature with highest error (MSE)
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ICS anomaly attribution: our adaptation of XAI

DL-based
modelSensors + actuators

Predicted 
ICS values

Attribution 
method

Sensor + actuator
attribution scores
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• Prior methods: does the attacked feature match the highest score? 
• Not how attribution scores would be used in practice

• Preliminary survey of ICS operators (n=7)
• Operators prefer to see multiple features, but not necessarily all
• Trade-off between number of features seen and accuracy

“A balanced trade-off is needed. Often having [a] list of max 10 [sensors] with 
minimal error rate is more useful than having less with high error rate.” –P4

We evaluate attribution for practical workflows
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• AvgRank: % of features considered before finding manipulated feature
• Lower AvgRank is better: operators consider fewer features, save time

We propose AvgRank to evaluate attribution

Sensor + actuator
attribution scores

Was the attacked 
feature found?

Search X% of 
features with 
highest scores
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Using MSE ranking for attribution performs worse
than previously reported

[1] C. Hwang and T. Lee, “E-SFD: Explainable sensor fault detection in the ICS anomaly detection system,” IEEE Access, vol. 9, 2021.
[2] M. Kravchik and A. Shabtai, “Efficient cyber attack detection in industrial control systems using lightweight neural networks and PCA,” 
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4, 2022.
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Using MSE ranking for attribution performs worse
than previously reported

• Prior work [1,2] evaluates attribution on a few case-study attacks
• Examples where attacked feature has highest MSE

• When evaluated across our set of 147 diverse attacks:
• Attacked feature has highest MSE in <40% of attacks
• On average, operators would have to consider >14% of features 

before finding attacked feature

[1] C. Hwang and T. Lee, “E-SFD: Explainable sensor fault detection in the ICS anomaly detection system,” IEEE Access, vol. 9, 2021.
[2] M. Kravchik and A. Shabtai, “Efficient cyber attack detection in industrial control systems using lightweight neural networks and PCA,” 
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4, 2022.
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• Three best-performing attribution methods (SM, SHAP, LEMNA):
• Surprisingly, attribution methods are consistently worse than MSE

Attribution methods perform worse than MSE 

Off-the-shelf attribution methods 
are not yet successful for ICS anomalies  B

E
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RQ2: How do ICS attack properties 
affect attribution?
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Attribution accuracy varies by detection latency

• Attributions are inaccurate within first 50 seconds
• But improve when computed within 50-100 seconds
• SM, SHAP, LEMNA now outperform MSE
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Input window preceding anomaly start

Input is mostly benign data

Detection is late (~100s)

How can timing affect attribution?

Example: SWaT attack #10 Option 1: “Instant”

“Instant”
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Input window preceding detection

Realistic, but late

Detection is late (~100s)
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“Practical”
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Input window begins with anomaly start

Ideal, but unknown in real time

Detection is late (~100s)

How can timing affect attribution?

Example: SWaT attack #10 Option 3: “Ideal”

“Ideal”



71

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



72

Attribution accuracy varies by timing strategy

• Ideal timing outperforms practical outcomes

B
E
T
T
E
R



73

• Ideal timing outperforms practical outcomes

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



74

• Ideal timing outperforms practical outcomes

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



75

• Ideal timing outperforms practical outcomes
• Avoiding “early” timings improves practical attribution results

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



76

• Ideal timing outperforms practical outcomes
• Avoiding “early” timings improves practical attribution results

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



77

• Ideal timing outperforms practical outcomes
• Avoiding “early” timings improves practical attribution results

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



78

• Ideal timing outperforms practical outcomes
• Avoiding “early” timings improves practical attribution results
• Attribution without alarms can be useful

Attribution accuracy varies by timing strategy

B
E
T
T
E
R



79

• Ideal timing outperforms practical outcomes
• Avoiding “early” timings improves practical attribution results
• Attribution without alarms can be useful

Attribution accuracy varies by timing strategy

Attribution of ICS anomalies can improve when 
decoupled from detection timing!B
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Why are attributions worse than expected?

• Broad differences among our 147 ICS attacks:
• Detection outcomes

• Latency, if detected, etc.
• Input manipulation

• Magnitude, location, pattern



81

Attribution accuracy varies by component type

B
E
T
T
E
R



82

Attribution accuracy varies by component type

B
E
T
T
E
R



83

• Attribution methods: more accurate for float-valued actuators

Attribution accuracy varies by component type

B
E
T
T
E
R



84

Attribution accuracy varies by component type

• Attribution methods: more accurate for float-valued actuators
• Boolean-valued actuators are difficult to attribute for all methods

B
E
T
T
E
R



85

B
E
T
T
E
R

Attribution accuracy varies by component type

• Attribution methods: more accurate for float-valued actuators
• Boolean-valued actuators are difficult to attribute for all methods

Different attribution strategies are best 
for different feature types!
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RQ3: Can we do better than 
prior attribution strategies?
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• Without knowing what attack or timing is used, can one strategy be best?
• We propose an ensemble attribution method:

• Take the average of attribution scores (MSE, SM, LEMNA) for each feature

Better attributions via ensembles?

MSE

SM

LEMNA

Average
DL-based

modelSensors + actuators 

Predicted 
ICS values
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• MSE performs worst when late
• SM and LEMNA perform 

worst when early
• Time-series history needed 

for attribution

• Ensembles outperform 
all individual methods
• At practical timings too! 

Better attributions via ensembles?

B
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Clement Fung, Eric Zeng, Lujo Bauer

clementf@cs.cmu.edu

Synthetic attacks: https://doi.org/10.1184/R1/23805552 
Modified simulator: https://github.com/pwwl/tep-attack-simulator 
Attribution code: https://github.com/pwwl/ics-anomaly-attribution 
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