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We evaluate attribution in diverse settings

« Compare a variety of anomaly-detection models [1]:
* Linear models, CNNs, RNNs, LSTMs

Carnegie Mellon University
Security and Privacy Institute

[2] Goh et al. "A dataset to support research in the design of secure water treatment systems." CRITIS 2016.

[1] Fung et al. "Perspectives from a comprehensive evaluation of reconstruction-based anomaly detection in ICS." ESORICS 2022.
[3] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process model,” IFAC ADCHEM, vol. 48, no. 8. 2015. Cy La



We evaluate attribution in diverse settings

» Datasets [2,3]: SWaT, WADI, TEP
* Water treatment (public datasets) "
e Chemical process (modified simulator) A

Carnegie Mellon University
Security and Privacy Institute

[2] Goh et al. "A dataset to support research in the design of secure water treatment systems." CRITIS 2016.

[1] Fung et al. "Perspectives from a comprehensive evaluation of reconstruction-based anomaly detection in ICS." ESORICS 2022.
[3] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process model,” IFAC ADCHEM, vol. 48, no. 8. 2015. Cy La



We evaluate attribution in diverse settings

» Attack scenarios: D&*i
* 47 real attacks on water treatment f:

« 100 synthetic attacks on chemical process "L-
* Made publicly available! %

[1] Fung et al. "Perspectives from a comprehensive evaluation of reconstruction-based anomaly detection in ICS." ESORICS 2022. (w. o \] ” L sversity
[2] Goh et al. "A dataset to support research in the design of secure water treatment systems." CRITIS 2016. La b .arnegie lvielion University
[3] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process model,” IFAC ADCHEM, vol. 48, no. 8. 2015. Cy Security and Privacy Institute



’ |ICS anomaly attribution: previously

| (N
Lb—-}.

G L 3 b Carnfbgie Mellon University
Security and Privacy Institute



’ |ICS anomaly attribution: previously

Predicted
. ICS values

G L 3 Carnfegie Mellon University
Security and Privacy Institute



’ |ICS anomaly attribution: previously

« Compare model prediction to observed ICS values

Predicted

ICS values

Sensors + actuators - ‘ I

Observed
ICS values

G Carnegie Mellon University
y Security and Privacy Institute



|ICS anomaly attribution: previously

« Compare model prediction to observed ICS values

) | N—

Predicted
ICS values

Sensors + actuators - ‘ I

Observed
ICS values

CylLa

Per-feature errors
(MSE)

Carnegie Mellon University
Security and Privacy Institute



ICS anomaly attribution: previously

« Compare model prediction to observed ICS values

« Attribute alarm to feature with highest error (MSE)
Predicted Per-feature errors
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We evaluate attribution for practical workflows

* Prior methods: does the attacked feature match the highest score?
* Not how attribution scores would be used in practice

* Preliminary survey of ICS operators (n=7)
e QOperators prefer to see multiple features, but not necessarily all
* Trade-off between number of features seen and accuracy

“A balanced trade-off is needed. Often having [a] list of max 10 [sensors] with
minimal error rate is more useful than having less with high error rate.” —P4
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We propose AvgRank to evaluate attribution

* AvgRank: % of features considered before finding manipulated feature
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We propose AvgRank to evaluate attribution

* AvgRank: % of features considered before finding manipulated feature
* Lower AvgRank is better: operators consider fewer features, save time

Search X% of
Sensor + actuator features with Was the attacked
attribution scores highest scores feature found?
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Using MISE ranking for attribution performs worse
than previously reported
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Using MISE ranking for attribution performs worse
than previously reported

* Prior work [1,2] evaluates attribution on a few case-study attacks
 Examples where attacked feature has highest MSE
* When evaluated across our set of 147 diverse attacks:
* Attacked feature has highest MISE in <40% of attacks
* On average, operators would have to consider >14% of features
before finding attacked feature

[1] C. Hwang and T. Lee, “E-SFD: Explainable sensor fault detection in the ICS anomaly detection system,” IEEE Access, vol. 9, 2021. Carnegie Mellon University
[2] M. Kravchik and A. Shabtai, “Efficient cyber attack detection in industrial control systems using lightweight neural networks and PCA,” a S 1‘_ d Pri Instit 1“
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4, 2022. ecurity an rivacy insrtirure
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Do attribution methods perform better?

* Three best-performing attribution methods (SM, SHAP, LEMNA)
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Attribution methods perform worse than MSE

« Three best-performing attribution methods (SM, SHAP, LEMNA):

Surprisingly, attribution methods are consistently worse than MSE
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’ Attribution methods perform worse than MSE

« Three best-performing attribution methods (SM, SHAP, LEMNA):
e Surprisingly, attribution methods are consistently worse than MSE
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RQ2: How do ICS attack properties
affect attribution?
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Why are attributions worse than expected?

* Broad differences among our 147 ICS attacks:
* Detection outcomes
* Latency, if detected, etc.
* Input manipulation
* Magnitude, location, pattern
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Attribution accuracy varies by detection latency
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Attribution accuracy varies by detection latency

Attributions are inaccurate within first 50 seconds
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Attribution accuracy varies by detection latency

« Attributions are inaccurate within first 50 seconds
* Butimprove when computed within 50-100 seconds
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Attribution accuracy varies by detection latency

« Attributions are inaccurate within first 50 seconds
* Butimprove when computed within 50-100 seconds
« SM, SHAP, LEMNA now outperform MSE
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' How can timing affect attribution?

Example: SWaT attack #10
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Example: SWaT attack #10

Detection is late (~100s)
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How can timing affect attribution?

Example: SWaT attack #10 Option 1: “Instant”
Detection is late (~100s) Input window preceding anomaly start
Input is mostly benign data
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How can timing affect attribution?

Example: SWaT attack #10 Option 2: “Practical”
Detection is late (~100s) Input window preceding detection
Realistic, but late

anomaly | :|_TV_| - anomaly
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—_— —
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How can timing affect attribution?

Example: SWaT attack #10 Option 3: “Ideal”
Detection is late (~100s) Input window begins with anomaly start

Ideal, but unknown in real time

anomaly | :m ' anomaly

AIT504 start | ' . end
seneorale _
MSE (overall): i 5

input
‘ window
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: I 250 300
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Attribution accuracy varies by timing strategy
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Attribution accuracy varies by timing strategy

« Ideal timing outperforms practical outcomes
« Avoiding “early” timings improves practical attribution results
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Attribution accuracy varies by timing strategy

AvgRank

Ideal timing outperforms practical outcomes
Avoiding “early” timings improves practical attribution results
Attribution without alarms can be useful
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Attribution accuracy varies by timing strategy

« Ideal timing outperforms practical outcomes
« Avoiding “early” timings improves practical attribution results
« Attribution without alarms can be useful
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Why are attributions worse than expected?

* Broad differences among our 147 ICS attacks:
* Detection outcomes
* Latency, if detected, etc.
* Input manipulation
 Magnitude, location, pattern
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Attribution accuracy varies by component type
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Attribution accuracy varies by component type
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Attribution accuracy varies by component type

e Attribution methods: more accurate for float-valued actuators
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Attribution accuracy varies by component type
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Attribution methods: more accurate for float-valued actuators
Boolean-valued actuators are difficult to attribute for all methods
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’ Attribution accuracy varies by component type

e Attribution methods: more accurate for float-valued actuators
 Boolean-valued actuators are difficult to attribute for all methods
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RQ3: Can we do better than
prior attribution strategies?
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Better attributions via ensembles?

« Without knowing what attack or timing is used, can one strategy be best?

Predicted
ICS values
Sensors + actuators ‘ Dlr_r;ggzcled » I
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’ Better attributions via ensembles?

« Without knowing what attack or timing is used, can one strategy be best?

* We propose an ensemble attribution method:

Sensors + actuators ‘.

Predicted
ICS values
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Better attributions via ensembles?

« Without knowing what attack or timing is used, can one strategy be best?
* We propose an ensemble attribution method:

* Take the average of attribution scores (MSE, SM, LEMNA) for each feature

Sensors + actuators “

Predicted
ICS values
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Security and Privacy Institute

o



Better attributions via ensembles?

MSE performs worst when late

T m— 4 m W

AvgRank
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Better attributions via ensembles?

« MSE performs worst when late
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Better attributions via ensembles?

« MSE performs worst when late
« SM and LEMNA perform
worst when early

e Time-series history needed
for attribution

* Ensembles outperform
all individual methods
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Better attributions via ensembles?

« MSE performs worst when late

 SM and LEMNA perform | MSE = - LEMNA
worst when early IR T, - SM — Ensemble
* Time-series history needed E <
. 0.3
for attribution e
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Attribution methods for ICS anomaly detection

Prior performance is worse than reported @
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Attribution methods for ICS anomaly detection

Prior performance is worse than reported @

ICS anomaly attribution is complex 'é
Timing and feature types affect which methods work best ’ "
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Attribution methods for ICS anomaly detection

Prior performance is worse than reported @

ICS anomaly attribution is complex 'é
Timing and feature types affect which methods work best ’ "

An ensemble approach balances tradeoffs RN
wnw
Though imperfect, attributions can help ICS operators Dﬁ
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Attribution methods for ICS anomaly detection

Prior performance is worse than reported

ICS anomaly attribution is complex 'é
Timing and feature types affect which methods work best ’ "
An ensemble approach balances tradeoffs ﬁﬁ{}g
Though imperfect, attributions can help ICS operators Dé
Clement Fung, Eric Zeng, Lujo Bauer Artifact

Evaluated

Carnegie Mellon University A NDSsS
clementf@cs.cmu.edu

Available

Functional

Synthetic attacks: https://doi.org/10.1184/R1/23805552

Modified simulator: https://github.com/pwwl/tep-attack-simulator
Attribution code: https://github.com/pwwl/ics-anomaly-attribution ‘ yLa
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