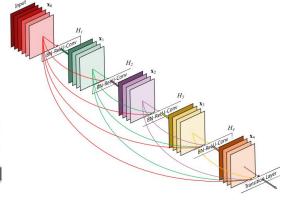
Brokered Agreements in Multi-Party Machine Learning

10th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2019)

Clement Fung, Ivan Beschastnikh
University of British Columbia

The emerging ML economy

- With the explosion of machine learning (ML), data is the new currency!
 - Good quality data is vital to the health of ML ecosystems
- Improve models with more data from more sources!



Actors in the ML economy

- Data providers:
 - Owners of potentially private datasets
 - Contribute data to the ML process

- Model owners:
 - Define model task and goals
 - Deploy and profit from trained model

- Infrastructure providers:
 - Host training process and model
 - Expose APIs for training and prediction

Google Cloud

Actors in today's ML economy

- Data providers supply data for model owners
- Model owners:
 - Manage infrastructure to host computation
 - Provide privacy and security for data providers
 - Use the model for profit once training is complete

In-House privacy solutions

ANDY GREENBERG SECURITY 06.13.16 07:02 PM

APPLE'S 'DIFFERENTIAL PRIVACY' IS ABOUT COLLECTING YOUR DATA—BUT NOT YOUR DATA

Senior vice president of software engineering Craig Federighi. 🙆 JUSTIN KANEPS FOR WIRED

- [1] Wired 2016.
- [2] Apple. "Learning with Privacy at Scale" Apple Machine Learning Journal V1.8 2017.
- [3] Wired 2017.

In-House privacy solutions

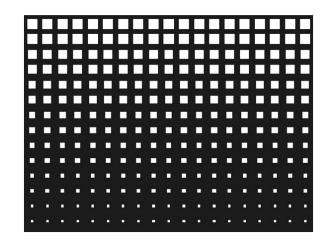
ANDY GREENBERG SECURITY 06.13.16 07:02 PM

APPLE'S 'DIFFERENTIAL PRIVACY' IS ABOUT COLLECTING YOUR DATA—BUT NOT YOUR DATA

Senior vice president of software engineering Craig Federighi. 🔂 JUSTIN KANEPS FOR WIRED

HOW ONE OF APPLE'S KEY PRIVACY SAFEGUARDS FALL

PRIVACY SAFEGUARDS FALLS SHORT



- [1] Wired 2016.
- [2] Apple. "Learning with Privacy at Scale" Apple Machine Learning Journal V1.8 2017.
- [3] Wired 2017.

Incentive trade-off in the ML economy

- Not only correctness, but there is an issue with incentives:
 - Data providers want to keep their data as private as possible
 - Model owners want to extract as much value from the data as possible
- Service providers lack incentives to provide fairness [1]
 - Need solutions that can work without cooperation from the system provider and are deployed from outside the system itself

Incentive trade-off in the ML economy

- Not only correctness, but there is an issue with incentives:
 - Data providers want to keep their data as private as possible
 - Model owners want to extract as much value from the data as possible.
- We cannot trust model owners to control the ML incentive tradeoff!

provider and are deployed from outside the system itself

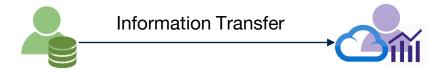
^[1] Overdorf et al. "Questioning the assumptions behind fairness solutions." NeurIPS 2018.

Incentives in today's ML economy

- Data providers supply data for model owners
- Model owners:
 - Manage infrastructure to host computation
 - Provide privacy and security for data providers
 - Use the model for profit once training is complete

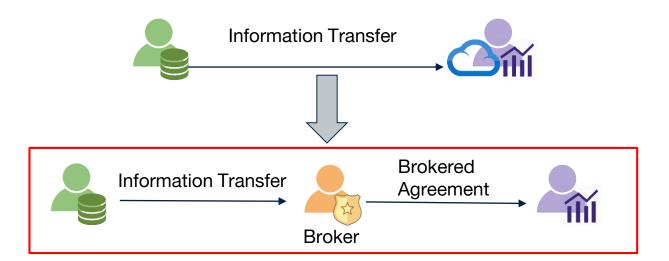
Incentives in today's ML economy

- Data providers supply data for model owners
- Model owners have incentive to:
 - Manage infrastructure to host computation
 - Provide privacy and security for data providers
 - Use the model for profit once training is complete



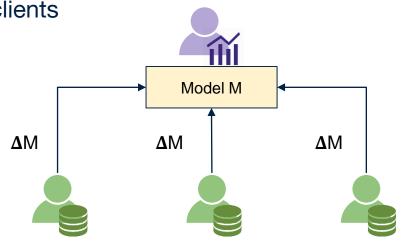
Our contribution: Brokered learning

- Introduce a <u>broker</u> as a neutral infrastructure provider:
 - Manage infrastructure to host ML computation
 - Provide privacy and security for data providers and model owners



Federated learning

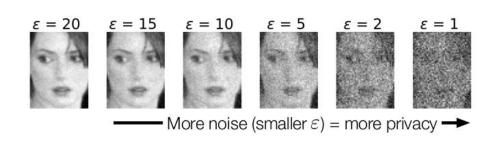
- A recent push for privacy-preserving multi-party ML [1]:
 - Send model updates over network
 - Aggregate updates across multiple clients
 - Client-side differential privacy [2]
 - Better speed, no data transfer
 - State of the art in multi-party ML
- Brokered learning builds on federated learning



^[1] McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data" AISTATS 2017.

Data providers are not to be trusted

- Giving data providers unmonitored control over compute:
 - o Providers can maximize privacy, give zero utility or attack system
 - Providers can attack ML model, compromising integrity [1]
 - Providers can attack other providers, compromising privacy [2]



^[1] Bagdasaryan et al. "How To Backdoor Federated Learning" arXiv 2018.

^[2] Hitaj et al. "Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning" CCS 2017.

Data providers are not to be trusted

- Giving data providers unmonitored control over compute:
 - Providers can maximize privacy, give zero utility or attack system
 - Providers can attack MI model compromising integrity [1]

We <u>also</u> cannot trust data providers to control the ML incentive tradeoff!

■ More noise (smaller ε) = more privacy

^[1] Bagdasaryan et al. "How To Backdoor Federated Learning" arXiv 2018.

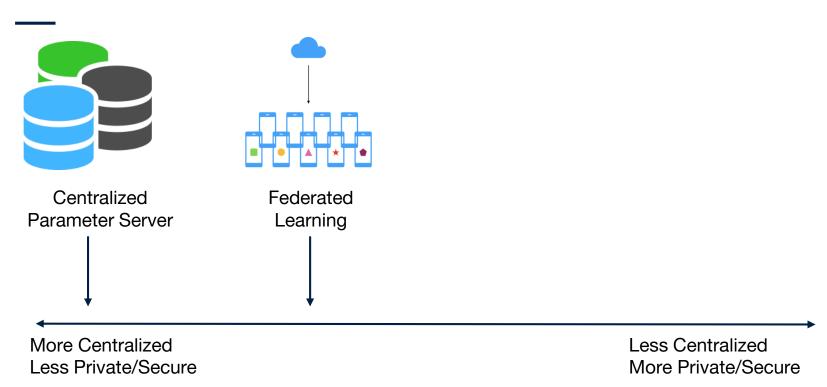
^[2] Hitaj et al. "Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning" CCS 2017.

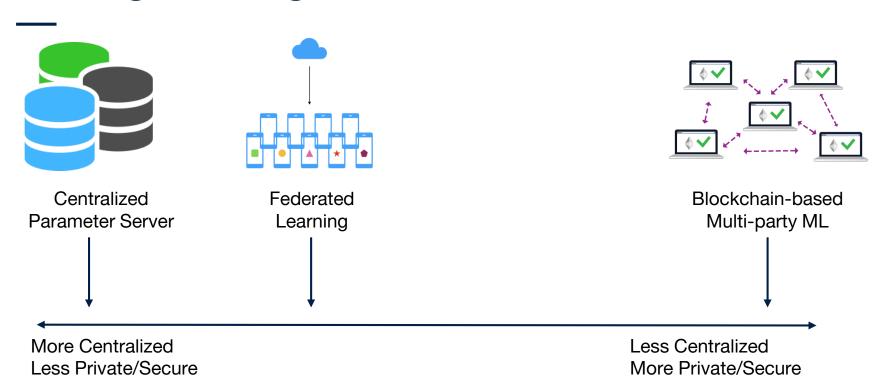
- The state of the art in multi-party ML
 - Gives too much control to model owners
 - Not privacy focused and vulnerable
- State of the art in private multi-party ML (federated learning)
 - Require trust in model owners or data providers
 - But there is no incentive for either to do so
- Data marketplaces (blockchains) [1]
 - Security and system overkill
 - Much too slow for modern use cases

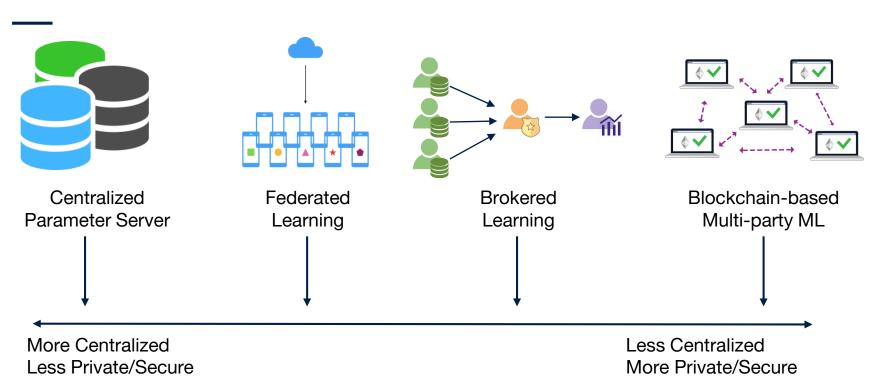
More Centralized Less Private/Secure Less Centralized
More Private/Secure

Centralized
Parameter Server

More Centralized Less Private/Secure Less Centralized More Private/Secure







Our contributions

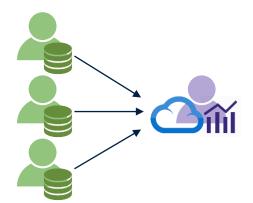
- Current multi-party ML systems use unsophisticated threat/incentive model:
 - Trust the model owner
- New brokered learning setting for privacy-preserving ML
- New defences against known ML attacks for this setting
- TorMentor: A brokered learning example of an anonymous ML system

Brokered Learning: A new standard for incentives in secure ML

Brokered Learning

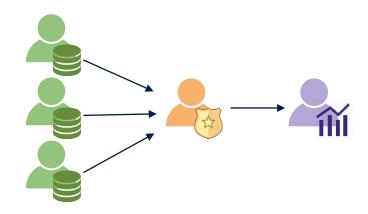
Brokered agreements in the ML economy

- Federated learning:
 - Communicate with model owner
 - Trust that model owner is not malicious
 - Model owners have full control over model and process



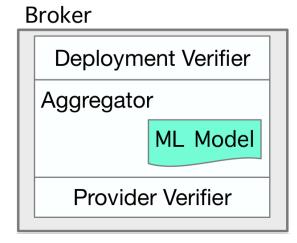
Brokered learning

- Communicate with neutral broker
- Broker executes model owner's validation services
- Decouple model owners and infrastructure



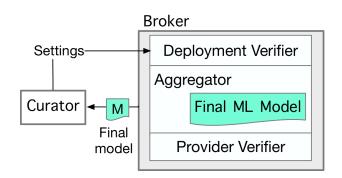
Brokered learning components

- Deployment verifier
 - Interface for model owners ("curators")
- Provider verifier
 - Interface for data providers
- Aggregator
 - Host ML deployments
 - Collect and aggregate model updates
 - Same as federated learning



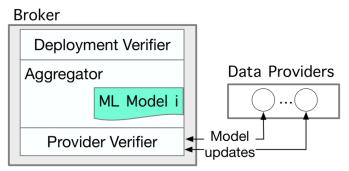
Deployment verifier API

- Serves as model owner interface
 - curate(): Launch curator deployment
 - Set provider verifier parameters
 - fetch(): Access to model once trained
- Protects the ML model from abuse from curator during training
- E.g. Blockchain smart contracts [1]

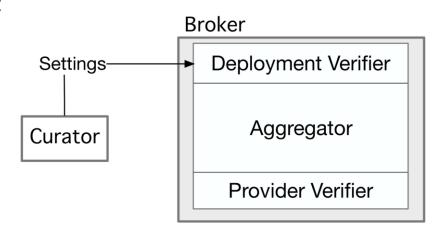


Provider verifier API

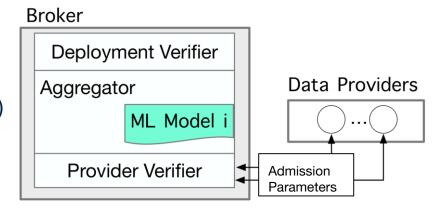
- Serves as data provider interface
 - Defined by curator
 - join(): Verify identity and allow provider join
 - update(): Verify and allow model update
- Protect model from malicious data providers
- E.g. Access tokens and statistical tests



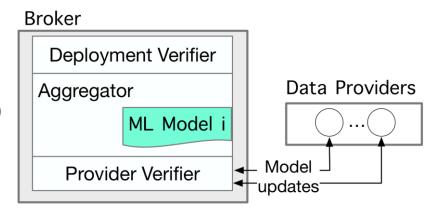
- Curator: Create deployment
 - Define model and provide deployment parameters
 - Define verification services



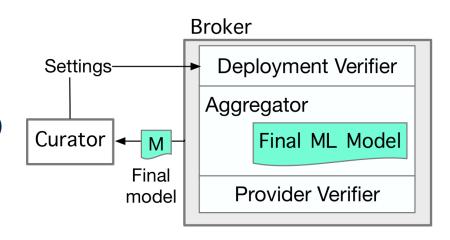
- Curator: Create deployment
 - Define model and provide deployment parameters
 - Define verification services
- Data providers: Join model
 - Define personal privacy preferences (ε)
 - Pass verification on join



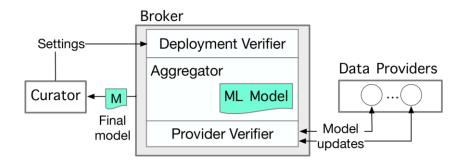
- Curator: Create deployment
 - Define model and provide deployment parameters
 - Define verification services
- Data providers: Join model and train
 - Define personal privacy preferences (ε)
 - Pass verification on join
 - Iterative model updates
 - Pass verification on model update



- Curator: Create deployment
 - Define model and provide deployment parameters
 - Define verification services
- Data providers: Join model and train
 - Define personal privacy preferences (ε)
 - Pass verification on join
 - Iterative model updates
 - Pass verification on model update
- Complete training
 - Return model to curator



Threat model



- Assume:
 - Broker honours verifier parameters
 - Users adhere to the given APIs for joining and model updates
 - Curators and data providers can collaborate
- Trust is based on incentives: broker is neutral to ML incentive trade-off
 - If broker attacks clients or violates curator specifications, reputation lost
 - Governments, large organizations, blockchains

TorMentor: An Example Brokered Learning System

TorMentor system goals

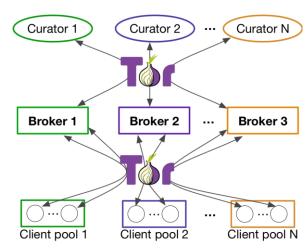
- Use brokered learning to build the first anonymous ML system:
 - Further support privacy in multi-party ML
 - Data provider and curator identity are hidden:
 - From each other and from the broker
- Meet defined learning objectives in reasonable time
 - Compared to WAN federated learning baseline

Implementation on Tor

- Onion routing protocols (Tor) [1]
 - Hide source and destination of messages by communicating through

chain of random nodes in system

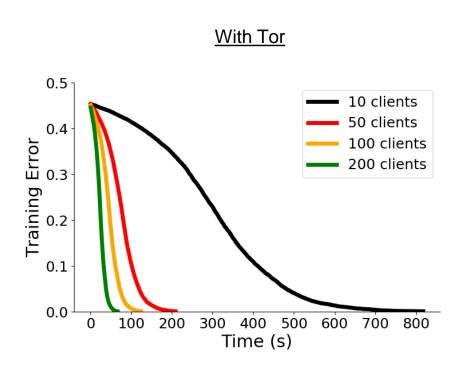
- Hide identity of users in distributed ML!
- Deploy broker as hidden Tor service

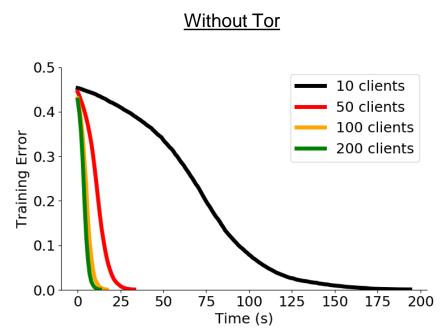


Implementation

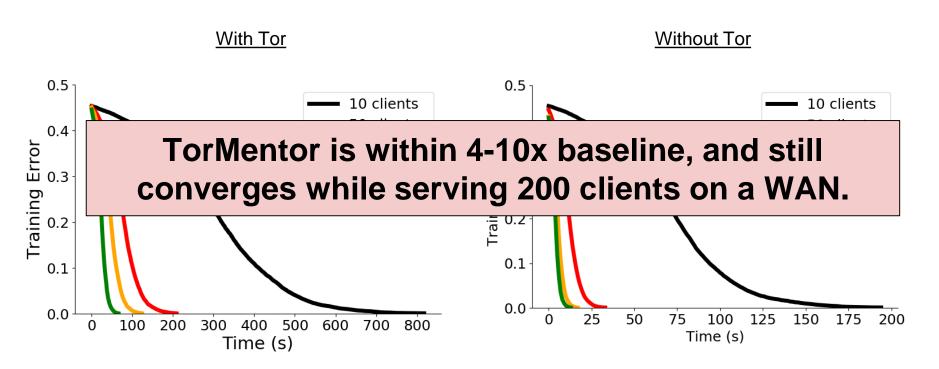
- Libraries written in Python and Go
 - 1500 LOC Python, 600 LOC Go
- Tested on "credit card default" UCI dataset
 - Logistic classifier
 - 30000 examples, 24 features (14 MB / client)
- Deployment at scale on Azure (8 data centres)
 - Deploy curators and data providers as users over wide area network

Convergence at scale over Tor





Convergence at scale over Tor

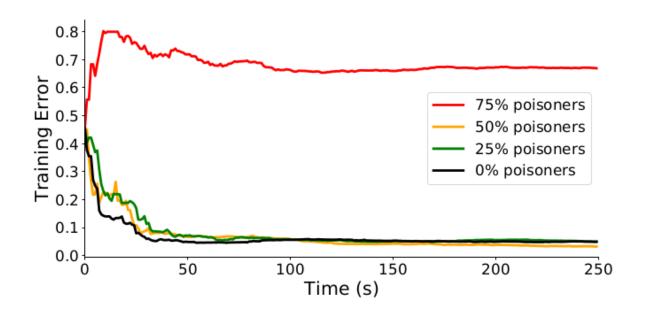


Provider verifier

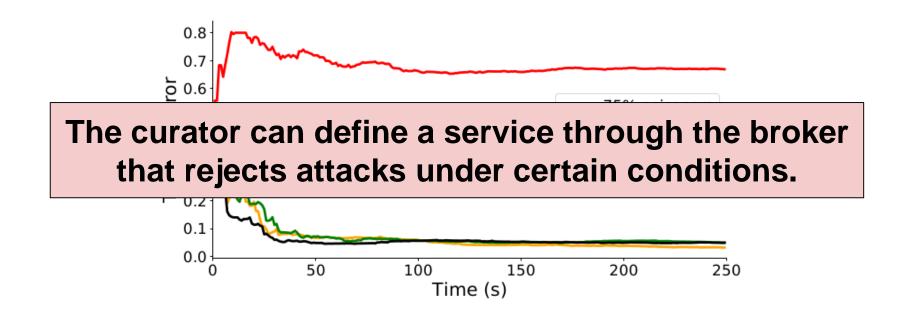
- Reject on Negative Influence (RONI) [1]
 - Reject datasets with negative impact on "influence" metric
 - Typically, just use validation error
- Model curator defines a distributed RONI:
 - Evaluate influence of model updates instead of data
 - Use curator provided validation set
 - Tune using data provider proof-of-work [2]

^[2] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system" 2008.

Evaluation: Provider verifier



Evaluation: Provider verifier



Brokered learning opportunities and limitations

- Modern use cases:
 - Blockchain-based data marketplaces
 - Standardizing "ML as a service"
 - GDPR Compliance
- Limitations
 - Moving from 2 actors to 3
 - Adoption from big players

Summary of contributions

- Existing ML systems do not provide:
 - Incentives, privacy, security
- We propose brokered learning as an alternative to federated learning
 - model 'updates' APIs to protect process from model owners and data providers

Final

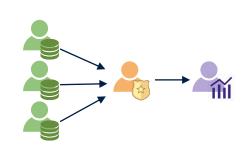
Broker

Aggregator

Settinas-

Curator -

- TorMentor prototype
 - Supports anonymous ML between data providers and curators
 - Allows curator defined process to reject malicious data providers



Deployment Verifier

Provider Verifier

ML Model

Data Providers

Model -