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Model Selection of Anomaly Detectors in the
Absence of Labeled Validation Data

Clement Fung, Chen Qiu, Aodong Li, and Maja Rudolph

Abstract—Anomaly detection is the task of identifying abnor-
mal samples in large unlabeled datasets. Although the advent
of foundation models has produced powerful zero-shot anomaly
detection methods, their deployment in practice is often hindered
by the absence of labeled validation data—without it, detection
performance cannot be evaluated reliably. In this work, we
propose SWSA (Selection With Synthetic Anomalies): a general-
purpose framework to select image-based anomaly detectors
without labeled validation data. Instead of collecting labeled
validation data, we generate synthetic anomalies from a small
support set of normal images without using any training or
fine-tuning. Our synthetic anomalies are then used to create
detection tasks that compose a validation framework for model
selection. In an empirical study, we evaluate SWSA with three
types of synthetic anomalies and on two selection tasks: model
selection of image-based anomaly detectors and prompt selection
for CLIP-based anomaly detection. SWSA often selects models
and prompts that match selections made with a ground-truth
validation set, outperforming baseline selection strategies.

Impact Statement—Foundation models can be applied to a
variety of anomaly detection tasks with little or no additional
training data. However, a lack of labeled anomalies still hinders
the deployment of these models, as their detection accuracy
cannot be validated. In this work, we propose a method for
selecting anomaly detectors that only requires a small amount of
benign data. We use our method to select image-based anomaly
detection models and show that it often selects the true best-
performing models and configurations. Our method reduces the
labor-intensive and economic burden of collecting representative
datasets of anomalies for validation, enabling model selection
with reduced data requirements.

Index Terms—Artificial intelligence algorithmic design and
analysis, Testing machine learning, Unsupervised learning

I. INTRODUCTION

Anomaly detection, identifying samples that deviate from
normal behavior, is an important task for supporting medical
diagnosis [19], financial transactions [1], cybersecurity [47],
[66], and industrial operations [4]. Recent developments in
foundation models suggest that it is possible to pre-train a
model on a large dataset from one domain and deploy it for
new anomaly detection tasks [41], [42], [80], providing the
exciting possibility to deploy anomaly detectors for new ap-
plications without training data. However, one must trust that
foundation models perform as expected before deployment.
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Validating the performance of anomaly detection models is
often hindered by the absence of labeled validation data, since
anomalies are, by definition, rare [22], [69].

In this work, we propose to use synthetic anomalies for
selecting image-based anomaly detectors through our proposed
framework: SWSA (Selection With Synthetic Anomalies). We
compare two promising types of strategies for generating
synthetic anomalies: (i) data augmentation methods [39] and
(ii) style transfer with pre-trained diffusion models [29]. Our
methods assume access to only a small support set of normal
images and do not require any training, fine-tuning, or domain-
specific techniques. We then label these generated images as
anomalies to create synthetic validation datasets for selecting
candidate anomaly detection models with SWSA. We find that
SWSA often matches the selections made with real validation
sets and outperforms baseline selection strategies across a
variety of anomaly detection tasks and domains, ranging from
natural images to industrial defects.

Our work makes the following contributions:
• In Sec. III-A, we propose SWSA: a framework to se-

lect anomaly detection models with synthetic anomalies.
Fig. 1 shows the outline of our approach.

• In Sec. III-B, we propose a practical technique for
generating synthetic anomalies with a general-purpose
pre-trained diffusion model—without any fine-tuning or
auxiliary datasets. When used in SWSA, we show that
these synthetic anomalies are most effective for model
selection in natural settings (i.e., birds and flowers).

• In Sec. IV, we empirically evaluate SWSA with a variety
of anomaly-generation methods, datasets, and anomaly-
detection tasks. We show that SWSA is effective in
two use cases: model selection from a set of candidate
anomaly detectors (Sec. IV-B) and prompt selection for
zero-shot CLIP-based anomaly detection (Sec. IV-C).

II. RELATED WORK

Unsupervised anomaly detection. To detect anomalies
without supervised labels, recent advances in unsupervised
anomaly detection use autoencoders [8], [54], deep one-class
classification [60], [61], transfer learning [13], [57], [59],
[63], and self-supervised learning [3], [26], [55], [67]. For
accurate detection, these architectures and training frame-
works depend on various hyper-parameters [5], [21], [23], but
selecting hyper-parameters often requires labeled validation
data which we assume is not unavailable. Similarly, semi-
supervised anomaly detection methods [12], [22], [37], [69]
also assume access to a training set with labeled anomalies.
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Fig. 1: We propose and compare two methods for generating synthetic anomalies, as described in Sec. III-B: image-guided
generation with a diffusion model and local augmentation. By combining real normal images with synthetic anomalies, we
create a synthetic validation set which is then used for model selection, as described in Sec. III-A. Components in blue are
frozen, components in green are real data, and components in orange are methods implemented in this work.

Anomaly detection with foundation models. Foundation
models are pre-trained on massive datasets to learn rich
semantic image features and can be used for new anomaly
detection tasks without additional training. Examples include
vision transformers [16] (ViT) and residual networks [24]
(ResNet) pre-trained on the ImageNet dataset [14]. Vision-
language models, such as CLIP [58], are another powerful
class of foundation model used for anomaly detection. Prior
work applies CLIP to new anomaly detection [41], [42], [80]
or anomaly segmentation tasks [30], [79] without training data.
However, CLIP relies on the choice of text prompts; prior
work learns the best-performing prompts from data [18], [30],
[40], [41], [80], but we assume that this additional training or
validation data is not available.

Alternative model selection strategies. Various prior works
propose strategies for model selection in new, untested do-
mains. Prior work uses internal metrics computed from pre-
dicted anomaly scores on unlabeled data [44], [45], [46],
[50], but only focus on tabular data. Meta-training is another
approach for anomaly detector selection [64], [77], [78], but
requires several relevant labeled benchmark datasets. Finally,
other prior work explores model selection with limited data but
focuses on contexts that differ from ours, such model selection
during training [65] or for NLP tasks [75].

Generating synthetic images from new distributions.
Generative adversarial networks (GANs) [32], [33] and dif-
fusion models [27], [68] are state-of-the-art models for image
synthesis [15]. These models are commonly trained to generate
images within the training data distribution, rather than the
anomalous images needed for model validation. Prior work
uses text prompts and CLIP to guide image synthesis towards
a new distribution of interest (e.g. “cat with glasses”) [20],
[34], [35], [36], [49], [70], which can be used for classifier
evaluation [43] and model diagnosis [28]. However, these
works rely on text prompts and therefore assume a known
distribution of interest. Since our work assumes that the
anomalous distribution is unknown, we use DiffStyle [29],
an image-generation interpolation method that uses a pre-
trained diffusion model without any training, fine-tuning, or
text prompts. We find that interpolating between two normal

images can preserve dominant visual features (i.e., realistic
background) and introduce manipulations similar to those
observed in anomalies. Finally, a variety of data augmentation
methods create anomalies by directly modifying normal im-
ages. These methods crop, rotate, paste, and interpolate images
to create anomalous patterns [6], [39], [73].

III. METHOD

In settings with limited training and validation data, two
commonly proposed approaches to generate synthetic data
use data augmentation [73] or model-based generation [31].
These approaches work well with limited data but require
domain-specific adaptations when applied to new domains.
In our work, we assume that no training, fine-tuning, or
domain-specific methods are used; we evaluate these two
approaches for generating synthetic anomalies, to create a
synthetic validation dataset for model selection. We call our
framework SWSA. We describe how synthetic anomalies are
used for SWSA in Sec. III-A and our methods for synthetic
anomaly generation in Sec. III-B. Fig. 1 shows the overall
process used in SWSA.

A. Model Selection with Synthetic Anomalies

Although labeled validation data is often absent when
deploying anomaly detection methods, normal data is often
available. For this reason, we assume access to a set of normal
samples which we call the support set Xsupport, which is used
to construct a synthetic validation set and perform model
selection in the following steps:

Step 1: Partitioning the support set. We randomly par-
tition Xsupport into seed images Xseed and normal validation
images Xin. Xseed is used for anomaly generation, and Xin is
held out for evaluation.

Step 2: Generating synthetic anomalies. We process Xseed
with DiffStyle [29] or CutPaste [39] to generate synthetic
anomalies X̃out. Additional details are provided in Sec. III-B.

Step 3: Mixing the synthetic validation set. We combine
Xin and X̃out to produce a labeled synthetic validation set,

D = {(x, 1)|x ∈ X̃out} ∪ {(x, 0)|x ∈ Xin}, (1)
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where a label of 1 indicates an anomaly and a label of 0
indicates a normal image.

Step 4: Evaluating candidate models. We evaluate candi-
date models by their detection performance on the synthetic
validation set D. We use AUROC, the area under the receiv-
ing operator characteristic curve, which is typically used to
evaluate anomaly detection models [17].

B. Generating Synthetic Anomalies
We propose two methods for generating synthetic anoma-

lies: an augmentation-based method and a diffusion-based
method. Both methods do not require any training or additional
data beyond Xseed.

Augmentation-based. CutPaste [39] is a data augmenta-
tion method used to generate data for training unsupervised
anomaly detection models. To modify an image with CutPaste,
one randomly crops a region of an image and pastes it onto a
different location. In our work, we propose a different use case
for CutPaste: we modify seed images from Xseed to generate
synthetic anomalies for model selection.

Diffusion-based. We use DiffStyle [29], diffusion-based
style transfer, to generate synthetic anomalies with a pretrained
DDIM. We first equally divide Xseed into style images Xstyle
and content images Xcontent. DiffStyle takes any style-content
image pair {I(1), I(2)} as input and generates a new image
with I(2)’s content and I(1)’s style. To achieve this, I(1) and
I(2) are mapped into the diffusion model’s latent space through
the forward diffusion process to produce latent vectors x

(1)
T

and x
(2)
T . We refer to the h-space (i.e., the inner-most layer

of the UNet) of x
(1)
T and x

(2)
T as h(1) and h(2) respectively.

Prior work has shown that h-space is a semantic space for
images and can be manipulated during the reverse diffusion
process [36].

Given two latent vectors h(1) and h(2), we perform a linear
interpolation: h(gen) = (1−γ)h(1)+γh(2) where γ represents
the relative weight of the content image. We then perform the
asymmetric reverse diffusion process using x

(1)
T , replacing the

h-space with h(gen):

xt−1 =
√
αt−1Pt(ϵ

θ
t (x

(1)
T |h(gen))) +Dt(ϵ

θ
t (x

(1)
T )). (2)

We then save the final output x0 as a synthetic anomaly.
To generate our full set of synthetic anomalies X̃out, we use
all possibilities of (I(1), I(2)) in the cross product of Xstyle
and Xcontent. Although prior results [35], [36] suggest that a
domain-specific diffusion model is required to generate high-
quality images, we find that using one common diffusion
model can be effective for SWSA. For all datasets, we use
the same diffusion model pre-trained on the ImageNet dataset
from prior work [15]. We discuss the hyper-parameters used
for DiffStyle in Appendix A.

Fig. 2 shows examples of our diffusion-based synthetic
anomalies; each synthetic anomaly (red) is interpolated from
a style image (green) and a content image (cyan). We find
that these images maintain the backgrounds and textures found
in normal images, but introduce semantic differences that are
similar to anomalies. We propose that the best-performing
models at detecting these synthetic anomalies may indeed be
the best-performing models at detecting real anomalies.

IV. EMPIRICAL STUDY

We evaluate our synthetic anomalies for model selection
by investigating whether SWSA selects similar models and
configurations as selection with real data. We evaluate on
both natural and industrial image domains. We first describe
the datasets, anomaly detection tasks, and anomaly generation
methodology in Sec. IV-A. Next, we demonstrate two use
cases of SWSA: model selection and CLIP prompt selection—
we find using SWSA produces the best model-selection per-
formance in seven of eight settings (Sec. IV-B) and produces
the best prompt-selection performance in six of eight settings
(Sec. IV-C), without any access to the real validation data.

A. Experimental Setup

We present our experimental setup for evaluating anomaly
detection models with synthetic validation data. We evalu-
ate on anomaly detection tasks from four datasets and two
anomaly-detection settings (i.e., one-vs-closest and one-vs-
rest). We investigate how well results on synthetic validation
data correspond to results with real validation data; we es-
timate detection performance, perform model selection, and
select hyper-parameters (e.g., CLIP prompts).

Datasets. We evaluate with four frequently-used image
datasets: Caltech-UCSD Birds (CUB) [71], Oxford Flow-
ers [52], MVTec Anomaly Detection (MVTec-AD) [4], and
Visual Anomaly Detection (VisA) [81]. CUB and Flowers
are multi-class datasets of 200 bird species and 102 flower
species respectively. MVTec-AD and VisA are datasets of
multiple industrial products (15 in MVTec-AD, 12 in VisA);
for each product, the training set contains images of defect-
free products, and the test set contains labeled images of both
defect-free and defective products.

Anomaly detection tasks. For CUB and Flowers, we create
anomaly detection tasks by treating each class as normal in
a one-vs-rest setting. We also adopt the one-vs-closest setting
used by Mirzaei et al. [48] to simulate more difficult anomaly
detection tasks. Specifically, after individually selecting each
class as the inlier class, we consider each out-class individually
and report the class with the worst performance. For MVTec-
AD and VisA, we predict if an image is of a defective product.
Each product includes images with different detect types; we
consider all defect types as a single anomalous class in the
one-vs-rest setting and the worst-performing defect type in the
one-vs-closest setting. For all tasks, we use images from the
in-class training subset as Xsupport and images from the relevant
in-class and out-class validation subsets as the real validation
set. In total, we evaluate with 329 anomaly detection tasks:
15 from MVTec-AD, 12 from VisA, 200 from CUB, and 102
from Flowers.

Generating synthetic anomalies. For all 329 anomaly
detection tasks, we generate synthetic anomalies by drawing
Xsupport from the training set of the in-class distribution only.
We generate the same number of images with the diffusion-
based and CutPaste-based methods: for CUB, VisA, and
MVTec-AD, we sample 20 images for Xseed and generate
100 synthetic anomalies with each method; for Flowers, only
10 images are included in the training set for each class, so
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(a) CUB class 1 (“Black Footed Albatross”) (b) MVTec-AD cable

Fig. 2: Synthetic anomalies are generated with our diffusion-based method for CUB class 1 (left) and MVTec-AD “cable”
(right). Each generated image (in red) is produced from a “style” image (on top, in green) and a “content” image (on left, in
cyan). All style and content images are drawn from the support set; no validation data or images from other classes are used.
The generated images (in red) are then labeled as anomalies in our synthetic validation sets, which are then used for evaluating
candidate anomaly detection models in SWSA.

we generate 25 synthetic anomalies with each method. Fig. 2
shows 15 examples of generated synthetic anomalies for a
single CUB class (left) and MVTec-AD product (right).

B. Model Selection with Synthetic Data

We first demonstrate SWSA for model selection. Given a
set of candidate models, we show that SWSA can select the
true best-performing model.

Candidate anomaly detection models. We experiment
across five pre-trained ResNet models (ResNet-152, ResNet-
101, ResNet-50, ResNet-34, ResNet-18) and five pre-trained
Vision Transformers (ViT-H-14, ViT-L-32, ViT-L-16, ViT-B-
32, ViT-B-16). For all models, we use the pre-trained Ima-
geNet weights from prior work [16], [24].

Deep-nearest-neighbor anomaly detection. To perform
anomaly detection, we use the nearest-neighbor-based method
of Bergman et al. [2]. We use the values of a candidate model’s
penultimate layer as the output of a feature extractor F and
process Xsupport with F to establish a feature bank Z:

zs = F (xs),∀xs ∈ Xsupport (3)

To perform anomaly detection on an input example d, we
use the Euclidean distance between F (d) and its k-nearest
neighbors in Z as an anomaly score s:

s =
∑

zs∈Zk(d)

||F (d)− zs||22 (4)

where Zk(d) are the k-nearest neighbors to d in the feature
bank. We use k = 3, as suggested by Bergman et al. [2].

Evaluation setup. For each task, we calculate the AUROC
for each candidate model using the synthetic and real vali-
dation datasets. We average the respective AUROCs across
all anomaly detection tasks to calculate “synthetic AUROC”
and “real validation AUROC”. We then compare the synthetic
AUROC and real validation AUROC to investigate if the
rankings of candidate models are similar. When reporting the

AUROC of SWSA, we select the model with the best synthetic
AUROC and report its corresponding real validation AUROC.

As a baseline, we include SWSA using the Tiny-ImageNet
dataset. Prior work uses Tiny-Imagenet for fine-tuning
anomaly detection models (i.e., outlier exposure [25]), and we
investigate if Tiny-Imagenet is effective for model selection;
we randomly sample images from Tiny-ImageNet to generate
X̃out of the same size: 100 images for tasks with CUB, VisA,
and MVTec-AD; 25 images for tasks with Flowers.

Evaluation results. We first evaluate SWSA for model
selection. The top half of Table I shows how often the best
model is picked (i.e., pick rate) and the resulting AUROC
for different model selection strategies. SWSA with diffusion-
based anomalies or CutPaste-based anomalies often selects the
best model and produces the highest AUROC for six out of
eight evaluation settings, even outperforming the largest avail-
able model (ViT-H-14). In particular, SWSA with diffusion-
based anomalies selects the best model the most often for all
CUB and Flowers settings.

We also evaluate SWSA for model ranking, beyond select-
ing the best-performing model. Fig. 3 shows the synthetic
and real validation AUROC for all 10 models in the one-vs-
closest (top) and one-vs-rest (bottom) settings. For Flowers
and CUB, SWSA is most consistent with diffusion-based
anomalies in the one-vs-rest setting. We show the Kendall’s
Tau rank correlation coefficients between the synthetic and real
validataion AUROC in Table II.1 For most one-vs-rest anomaly
detection tasks, we also find that SWSA performs well with
few anomalies; we vary the number of synthetic anomalies
from the full set of anomalies to as few as five, keeping
the anomalies with the lowest anomaly score (i.e., the most
difficult anomalies). SWSA with diffusion-based anomalies
performs best on most one-vs-rest tasks with Flowers.

For MVTec-AD and VisA, unlike the datasets of natural
images, SWSA is less effective; the model selection results

1For Tiny-Imagenet, the synthetic AUROC ≈ 1.0 for most cases, and the
rank correlation is near zero.
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TABLE I: We report (i) how often SWSA picks the best model/prompt (“pick rate”) and (ii) the resulting AUROC of the
selections made by SWSA. We show the AUROC when the best model/prompt is always selected (in grey) as an upper bound.
For all settings, SWSA outperforms baseline strategies: using the largest model (ViT-H-14), the default prompt, or a prompt
ensemble [58]. In particular, SWSA with diffusion-based anomalies is most effective for natural images (CUB and Flowers).

CUB Flowers MVTec-AD VisA
Pick rate AUROC Pick rate AUROC Pick rate AUROC Pick rate AUROC

One-vs-Closest
(model selection)

Largest model 11 / 200 0.653 43 / 102 0.956 4 / 15 0.716 1 / 12 0.636
SWSA (TinyImg) 30 / 200 0.674 50 / 102 0.966 4 / 15 0.716 1 / 12 0.636

SWSA (Diffusion) 66 / 200 0.737 59 / 102 0.967 4 / 15 0.670 0 / 12 0.643
SWSA (CutPaste) 60 / 200 0.743 37 / 102 0.945 2 / 15 0.678 1 / 12 0.674

Best Model – 0.826 – 0.990 – 0.785 – 0.752

One-vs-Rest
(model selection)

Largest model 32 / 200 0.982 49 / 102 0.994 4 / 15 0.733 1 / 12 0.765
SWSA (TinyImg) 59 / 200 0.982 57 / 102 0.993 4 / 15 0.733 1 / 12 0.765

SWSA (Diffusion) 109 / 200 0.988 62 / 102 0.994 2 / 15 0.706 0 / 12 0.764
SWSA (CutPaste) 62 / 200 0.966 37 / 102 0.974 2 / 15 0.717 1 / 12 0.772

Best Model – 0.991 – 0.997 – 0.757 – 0.824

One-vs-Closest
(prompt selection)

Default Prompt 5 / 200 0.571 1 / 102 0.697 2 / 15 0.741 0 / 12 0.596
Prompt Ensemble – 0.577 – 0.708 0 / 15 0.728 0 / 12 0.596
SWSA (TinyImg) 34 / 200 0.582 18 / 102 0.718 2 / 15 0.760 1 / 12 0.612

SWSA (Diffusion) 46 / 200 0.590 38 / 102 0.729 2 / 15 0.725 2 / 12 0.596
SWSA (CutPaste) 34 / 200 0.585 18 / 102 0.718 3 / 15 0.763 2 / 12 0.604

Best Prompt – 0.625 – 0.759 – 0.845 – 0.702

One-vs-Rest
(prompt selection)

Default Prompt 0 / 200 0.971 1 / 102 0.959 2 / 15 0.752 0 / 12 0.724
Prompt Ensemble – 0.972 – 0.962 0 / 15 0.753 0 / 12 0.747
SWSA (TinyImg) 27 / 200 0.972 13 / 102 0.967 5 / 15 0.765 1 / 12 0.745

SWSA (Diffusion) 64 / 200 0.973 38 / 102 0.967 1 / 15 0.728 2 / 12 0.724
SWSA (CutPaste) 27 / 200 0.972 22 / 102 0.963 1 / 15 0.746 2 / 12 0.730

Best Prompt – 0.976 – 0.971 – 0.786 – 0.801

Fig. 3: We compare the rankings of real and synthetic validation AUROC for all models across three types of synthetic anomalies:
Tiny-Imagenet, diffusion-based anomalies, and Cutpaste-based anomalies. Ideally, the ranking of models with synthetic data
(along the x-axis) should match the ranking of models with real data (along the y-axis). SWSA performs best when ranking
models with diffusion-based anomalies in the one-vs-rest anomaly detection setting on CUB and Flowers. We provide Kendall’s
Tau rank correlation values for these results in Table II.

are less consistent and the correlation from model rankings
are not statistically significant. These anomalies come from
fine-grained industrial defects and are generally more difficult
to detect; we provide additional analysis in Sec. IV-D.

C. CLIP Prompt Selection with Synthetic Data
In this section, we show that SWSA can be used to select the

best-performing prompts for CLIP-based anomaly detection.

Zero-shot anomaly detection with CLIP. We use CLIP
to perform anomaly detection using a technique from prior
work: given an input image, we input two text prompts to
CLIP—one for normal data, one for anomalies—and predict
based on the prompt that produces a higher similarity to
the image [58]. We use the same backbone (“ViT-B-16-plus-
240”) and data transformations as in prior work [30]. In
our candidate text prompts, we assume that the name of
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TABLE II: To evaluate SWSA for model ranking, we calculate the Kendall’s Tau rank correlation between the rankings found
with real and synthetic validation datasets for diffusion-based and CutPaste-based anomalies. Since we perform repeated tests
on the same data, we apply Bonferroni correction; cases with a statistically significant rank correlation (p < 5.56e-3) are
bolded. We find that SWSA is particularly effective with diffusion-based anomalies for (i) one-vs-rest tasks on CUB and
Flowers, and (ii) one-vs-closest tasks on Flowers.

# of synthetic anomalies
All anomalies 10 5

One-vs-Closest

Diffusion (CUB) 0.644 (p=9.14e-3) 0.600 (p=1.67e-2) 0.600 (p=1.67e-2)
CutPaste (CUB) 0.377 (p=1.55e-1) 0.511 (p=4.66e-2) 0.555 (p=2.86e-2)

Diffusion (Flowers) 0.777 (p=9.46e-4) 0.777 (p=9.46e-4) 0.822 (p=3.57e-4)
CutPaste (Flowers) 0.644 (p=9.14e-3) 0.466 (p=7.25e-2) 0.244 (p=3.81e-1)

One-vs-Rest

Diffusion (CUB) 0.866 (p=1.15e-4) 0.822 (p=3.57e-4) 0.822 (p=3.57e-4)
CutPaste (CUB) 0.600 (p=1.67e-2) 0.733 (p=2.21e-3) 0.688 (p=4.68e-3)

Diffusion (Flowers) 0.866 (p=1.15e-4) 0.866 (p=1.15e-4) 0.911 (p=2.97e-5)
CutPaste (Flowers) 0.733 (p=2.21e-3) 0.555 (p=2.86e-2) 0.333 (p=2.16e-1)

the normal class is known. For CUB and Flowers, we use
“some” to describe anomalies; for example we compare “a
photo of a red cardinal” to “a photo of some
bird”. For MVTec-AD and VisA, we use “with defect”
to describe anomalies; for example, we compare “a photo
of a transistor” to “a photo of a transistor
with defect”. We select from a set of ten prompts used
in prior work [30], described in Appendix B.

Evaluation setup. We compare SWSA to two baselines: (i)
the default prompt template (i.e., “a photo of a [class
name] bird” vs “a photo of some bird”) and (ii) a
full prompt ensemble as proposed by Radford et al. [58] and
evaluated in prior work [30], [80]. For each selection strategy,
we select the prompt with the best synthetic AUROC and
report (i) how often the selection matches the best prompt
on real validation data and (ii) the resulting AUROC when
using the selected prompt.

Evaluation results. We evaluate SWSA for prompt selec-
tion in the one-vs-closest and one-vs-rest settings for all 329
anomaly detection tasks. In the bottom half of Table I, we
report how often each strategy selects the best prompt and
each strategy’s resulting AUROC. SWSA with diffusion-based
anomalies performs best for Flowers and CUB by selecting the
best prompt the most often and producing the highest AUROC
for all settings, outperforming the popular prompt ensemble.

For MVTec-AD and VisA, SWSA performs best with
CutPaste-based anomalies, outperforming the prompt ensem-
ble in one-vs-closest settings. We find that although the com-
monly proposed prompt ensemble is most effective in general,
it does not always perform best; SWSA outperforms the
prompt ensemble in particularly difficult settings (i.e., worst-
case anomaly detection tasks). Overall, SWSA can be used to
select the best prompts for CLIP-based anomaly detection for
tasks of varying domain and difficulty.

D. Analysis of SWSA
In this section, we use four representative one-vs-closest

anomaly detection tasks to analyze SWSA’s performance on
different types of synthetic anomalies. To highlight different
failure cases, we analyze the task from each dataset with the
lowest baseline AUROC.

TABLE III: For the four anomaly detection tasks described in
Sec. IV-D, we compute the total variation between the real and
synthetic validation datasets. We find that no setting provides
a tight bound and we cannot provide strong guarantees of rank
preservation with SWSA.

Real vs: Flowers CUB MVTec-AD VisA

Diffusion-based 0.698 1.257 1.143 0.934
Cutpaste-based 0.697 1.042 0.534 0.804

Theoretical analysis. We first perform a theoretical analysis
of SWSA by computing the total variation between real and
synthetic validation sets to determine if a tight bound exists
for model rank preservation. Shoshan et al. [65] study model
selection with synthetic data for binary classification; they
show that the total variation distance between a synthetic
validation set and true data provides an upper bound on
the empirical risk difference between any two classifiers. We
follow the method of Sajjadi et al. [62] to compute the total
variation between datasets. For each dataset, we compare
D1 = Xsupport ∪Xout and D2 = Xsupport ∪ X̃out, where X̃out are
our diffusion-based or CutPaste-based synthetic anomalies.

Table III shows the total variation for each dataset and
type of synthetic anomaly. We find that neither Cutpaste-
based or diffusion-based anomalies provide a tight bound
for synthetic validation sets (the empirical risk difference
is greater than 0.5). Although we ultimately cannot provide
theoretical guarantees, our empirical results in Table I show
that SWSA often selects models and prompts that match
the selections made with real validation data. An analysis of
SWSA that provides stronger guarantees is left as future work.

Qualitative analysis. We next perform a qualitative visual
analysis of our representative anomaly detection tasks. Fig. 4
(top) shows the t-SNE visualization of the embeddings from
the ViT-B-16 model for each task. We plot the embeddings
of (i) real normal images, (ii) real abnormal images, (iii)
diffusion-generated anomalies, and (iv) CutPaste-generated
anomalies. Real anomalies are not available for SWSA in
practice but we use their embeddings for illustration. We find
that, when anomalies come from natural variations (e.g., differ-
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Fig. 4: For four representative anomaly detection tasks, we compare real one-vs-closest anomalies (blue triangle), diffusion-
generated anomalies (black circle), and Cutpaste-generated anomalies (green square). On top, we show t-SNE visualizations
of the ViT-B-16 embeddings for each image. On bottom, we plot a distribution of the SSIM scores between each pair of
anomaly types. Overall, when anomalies come from natural variations between classes (CUB and Flowers), they are further
from the normal class and are better represented by diffusion-based anomalies. When anomalies come from fine-grained changes
(MVTec-AD and VisA), they are closer to normal images and are better represented by Cutpaste-based anomalies.

ent flower species), their embeddings are further from normal
data, similar to diffusion-based anomalies. Conversely, when
anomalies come from fine-grained changes (e.g., defective pin
on a chip), their embeddings are closer to normal data, similar
to Cutpaste-based anomalies.

We also compare the structural similarity (SSIM) [72] for
different types of anomalies. We calculate the SSIM between
real normal images and each type of anomalies; a higher
SSIM indicates that the pairs of images are more structurally
similar. Fig. 4 (bottom) shows the kernel density estimate of
the distribution of SSIM scores for each type of anomaly on
each representative anomaly detection task. Although SSIM
is only a heuristic for the visual difference between images,
we note that SWSA’s performance depends on how well
diffusion-generated or Cutpaste-based anomalies can represent
the distances typically observed between normal images and
anomalies; both CUB and Flowers show higher distributional
overlaps with CutPaste-based and diffusion-based anomalies.
Finally, we find that for MVTec-AD and VisA, the dis-
tributions of real anomalies overlap more closely with the
normal data distribution; their t-SNE embeddings are closer
and their SSIM scores are higher. This makes detecting these
anomalies with foundation models more difficult and suggests
why SWSA is worse at estimating their performance.

V. LIMITATIONS AND FUTURE WORK

Integrating SWSA in real-world settings and other
domains. In real-world settings, we assume that practitioners
have access to a set of candidate anomaly detection models,
for which model selection is needed. In practice, integrating
SWSA only requires a small set of normal images (for the

support set) and a pre-trained, public diffusion model (for
image synthesis).

Although the computational and data requirements for
SWSA are low, we anticipate challenges with domain transfer
when integrating SWSA to new domains. We found that
SWSA performed most poorly on datasets of industrial de-
fects; in general, anomaly detection for these tasks is difficult
with pre-trained models [42], [48] and requires fine-tuning or
domain-specific prompt tuning [30], both of which are out of
scope in our setting.

Our work uses pre-trained models on ImageNet, and we
expect that integrating SWSA for domains not well represented
by ImageNet will require new foundation models, such as (i)
those trained for industrial products similar to those found in
MVTec-AD and VisA or (ii) for non-image domains, such as
text [76] and time-series data [74]. As these models become
available, applying SWSA to such domains will become an
intriguing area for future work.

Security considerations for SWSA. SWSA relies on pre-
trained diffusion models for anomaly generation. Prior work
has shown that attackers can inject backdoors [7], [10], [11]
into diffusion models. An attack could inject backdoors into a
diffusion model which, when used in SWSA, could mislead a
victim into selecting a sub-optimal anomaly detection model,
enabling other attacks. Neuron pruning and latent clipping
have been proposed as countermeasures to these attacks [10],
and exploring how these attacks and defenses affect SWSA is
interesting future work.

Next opportunities for improving SWSA. While our
results show initial promise for SWSA, especially on anomaly
detection tasks with natural images, we believe that there
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are still promising opportunities for future work to improve
SWSA further and apply our synthetic anomalies for other
related tasks. First, our work evaluates data augmentation
and diffusion-based methods independently; we propose that
hybrid generation techniques which combine techniques from
diffusion-based style transfer, image interpolation, and image
modification may be effective in generating anomalies for
more difficult tasks. Second, we suggest that SWSA may
be effective in meta-learning and active-learning settings; in
these settings, our synthetic anomalies could be used both
for selection and for fine-tuning candidate anomaly detection
models, similar to outlier exposure [25], [38], [42], [53], [56],
which explores fine-tuning of anomaly detection models with
auxiliary data. Finally, our work only performs a minimal
amount of prompt design since we assume that the anomalous
domain is completely unknown. In contrast, if we can make
some minimal assumptions about anomalies, we can use this
information to further engineer and optimize the candidate
prompt templates used for SWSA, improving the performance
of CLIP-based anomaly detection.

VI. CONCLUSION

In this work, we propose and evaluate SWSA: an approach
to select image-based anomaly detection models without val-
idation data or domain-specific methods. We use a general-
purpose diffusion model to generate synthetic anomalies using
only a small support set of in-class examples, without requiring
any model training or fine-tuning. We present an empirical
study which shows that SWSA can be used to select image-
based anomaly detection models and to select prompts for
zero-shot CLIP-based anomaly detection. SWSA can outper-
form baseline selection strategies, such as using the largest
model or a prompt ensemble.
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Campello, Barbora Micenková, Erich Schubert, Ira Assent, and
Michael E Houle. On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study. Data Mining and Knowledge
Discovery, 30, 2016.

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. SMOTE: synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research, 16, 2002.

[7] Weixin Chen, Dawn Song, and Bo Li. TrojDiff: Trojan attacks on
diffusion models with diverse targets. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023.

[8] Xiaoran Chen and Ender Konukoglu. Unsupervised detection of lesions
in brain MRI using constrained adversarial auto-encoders. In MIDL
Conference Book, 2018.

[9] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo
Kim, and Sungroh Yoon. Perception prioritized training of diffusion
models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[10] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor
diffusion models? In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

[11] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. VillanDiffusion: A
unified backdoor attack framework for diffusion models. Advances in
Neural Information Processing Systems, 2023.

[12] Shubhomoy Das, Weng-Keen Wong, Thomas Dietterich, Alan Fern, and
Andrew Emmott. Incorporating expert feedback into active anomaly
discovery. In International Conference on Data Mining, 2016.

[13] Lucas Deecke, Lukas Ruff, Robert A Vandermeulen, and Hakan Bilen.
Transfer-based semantic anomaly detection. In International Conference
on Machine Learning, 2021.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. ImageNet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs
on image synthesis. Advances in Neural Information Processing Systems,
2021.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning
Representations, 2021.

[17] Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and
Weng-Keen Wong. A meta-analysis of the anomaly detection problem.
arXiv preprint arXiv:1503.01158, 2015.

[18] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-
shot out-of-distribution detection based on the pretrained model CLIP.
In AAAI conference on artificial intelligence, 2022.

[19] Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridha-
ran, and Clinton Fookes. Deep learning for medical anomaly detection–a
survey. ACM Computing Surveys, 54(7), 2021.

[20] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel
Cohen-Or. StyleGAN-NADA: CLIP-guided domain adaptation of image
generators. arXiv preprint arXiv:2108.00946, 2021.

[21] Markus Goldstein and Seiichi Uchida. A comparative evaluation of
unsupervised anomaly detection algorithms for multivariate data. PloS
one, 11(4), 2016.

[22] Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward su-
pervised anomaly detection. Journal of Artificial Intelligence Research,
46, 2013.

[23] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue
Zhao. ADBench: Anomaly detection benchmark. Advances in Neural
Information Processing Systems, 2022.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[25] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep
anomaly detection with outlier exposure. In International Conference
on Learning Representations, 2019.

[26] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song.
Using self-supervised learning can improve model robustness and un-
certainty. Advances in Neural Information Processing Systems, 2019.

[27] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion prob-
abilistic models. Advances in Neural Information Processing Systems,
33, 2020.

[28] Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry.
Distilling model failures as directions in latent space. In International
Conference on Learning Representations, 2023.

[29] Jaeseok Jeong, Mingi Kwon, and Youngjung Uh. Training-free content
injection using h-space in diffusion models. In IEEE/CVF Winter
Conference on Applications of Computer Vision, 2024.

[30] Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash
Ravichandran, and Onkar Dabeer. WinCLIP: Zero-/few-shot anomaly
classification and segmentation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

[31] Yanmei Jiang, Xiaoyuan Ma, and Xiong Li. Towards virtual sample
generation with various data conditions: A comprehensive review. In-
formation Fusion, 117:102874, 2025.

[32] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator ar-
chitecture for generative adversarial networks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[33] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. Analyzing and improving the image quality of
StyleGAN. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[34] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali
Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-based real image



9

editing with diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

[35] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusion-
CLIP: Text-guided diffusion models for robust image manipulation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

[36] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models
already have a semantic latent space. In International Conference on
Learning Representations, 2023.

[37] Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Stephan Mandt,
and Maja Rudolph. Deep anomaly detection under labeling budget
constraints. In International Conference on Machine Learning, 2023.

[38] Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph,
and Stephan Mandt. Zero-shot anomaly detection without foundation
models. arXiv preprint arXiv:2302.07849, 2023.

[39] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cut-
paste: Self-supervised learning for anomaly detection and localization.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

[40] Xiaofan Li, Zhizhong Zhang, Xin Tan, Chengwei Chen, Yanyun Qu,
Yuan Xie, and Lizhuang Ma. PromptAD: Learning prompts with
only normal samples for few-shot anomaly detection. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

[41] Yiting Li, Adam Goodge David, Fayao Liu, and Chuan-Sheng Foo.
PromptAD: Zero-shot anomaly detection using text prompts. In
IEEE/CVF Winter Conference on Applications of Computer Vision,
2024.

[42] Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe
Franks, Klaus Robert Muller, and Marius Kloft. Exposing outlier
exposure: What can be learned from few, one, and zero outlier images.
Transactions on Machine Learning Research, 2022.

[43] Jinqi Luo, Zhaoning Wang, Chen Henry Wu, Dong Huang, and Fernando
De la Torre. Zero-shot model diagnosis. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023.

[44] Martin Q Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. The
need for unsupervised outlier model selection: A review and evaluation
of internal evaluation strategies. ACM SIGKDD Explorations Newsletter,
25(1), 2023.

[45] Henrique O Marques, Ricardo JGB Campello, Jörg Sander, and Arthur
Zimek. Internal evaluation of unsupervised outlier detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 14(4), 2020.

[46] Henrique O Marques, Ricardo JGB Campello, Arthur Zimek, and Jörg
Sander. On the internal evaluation of unsupervised outlier detection. In
International conference on scientific and statistical database manage-
ment, 2015.

[47] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion
detection. In Network and Distributed System Security Symposium, 2018.

[48] Hossein Mirzaei, Mohammadreza Salehi, Sajjad Shahabi, Efstratios
Gavves, Cees G. M. Snoek, Mohammad Sabokrou, and Moham-
mad Hossein Rohban. Fake it until you make it: Towards accurate near-
distribution novelty detection. In International Conference on Learning
Representations, 2023.

[49] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-
Or. Null-text inversion for editing real images using guided diffusion
models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[50] Thanh Trung Nguyen, Uy Quang Nguyen, et al. An evaluation method
for unsupervised anomaly detection algorithms. Journal of Computer
Science and Cybernetics, 32(3), 2016.

[51] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising
diffusion probabilistic models. In International Conference on Machine
Learning, 2021.

[52] Maria-Elena Nilsback and Andrew Zisserman. Automated flower clas-
sification over a large number of classes. In Indian Conference on
Computer Vision, Graphics and Image Processing, 2008.

[53] Lorenzo Perini, Maja Rudolph, Sabrina Schmedding, and Chen Qiu.
Uncertainty-aware evaluation of auxiliary anomalies with the expected
anomaly posterior. Transactions on Machine Learning Research, 2025.

[54] Emanuele Principi, Fabio Vesperini, Stefano Squartini, and Francesco
Piazza. Acoustic novelty detection with adversarial autoencoders. In
2017 International Joint Conference on Neural Networks, 2017.

[55] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. Raising the
bar in graph-level anomaly detection. In International Joint Conference
on Artificial Intelligence, 2022.

[56] Chen Qiu, Aodong Li, Marius Kloft, Maja Rudolph, and Stephan Mandt.
Latent outlier exposure for anomaly detection with contaminated data.
In International Conference on Machine Learning, 2022.

[57] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja

Rudolph. Neural transformation learning for deep anomaly detection
beyond images. In International Conference on Machine Learning,
2021.

[58] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning,
2021.

[59] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen. Panda:
Adapting pretrained features for anomaly detection and segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

[60] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke,
Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and
Marius Kloft. Deep one-class classification. In International Conference
on Machine Learning, 2018.

[61] Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder,
Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. Deep semi-
supervised anomaly detection. In International Conference on Learning
Representations, 2019.

[62] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and
Sylvain Gelly. Assessing generative models via precision and recall.
Advances in Neural Information Processing Systems, 2018.

[63] Tim Schneider, Chen Qiu, Marius Kloft, Decky Aspandi Latif, Stef-
fen Staab, Stephan Mandt, and Maja Rudolph. Detecting anomalies
within time series using local neural transformations. arXiv preprint
arXiv:2202.03944, 2022.

[64] David Schubert, Pritha Gupta, and Marcel Wever. Meta-learning for
automated selection of anomaly detectors for semi-supervised datasets.
In International Symposium on Intelligent Data Analysis, 2023.

[65] Alon Shoshan, Nadav Bhonker, Igor Kviatkovsky, Matan Fintz, and
Gerard Medioni. Synthetic data for model selection. In International
Conference on Machine Learning, 2023.

[66] Hossein Siadati and Nasir Memon. Detecting structurally anomalous
logins within enterprise networks. In ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[67] Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas
Pfister. Learning and evaluating representations for deep one-class
classification. In International Conference on Learning Representations,
2020.

[68] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion
implicit models. In International Conference on Learning Representa-
tions, 2021.

[69] Holger Trittenbach, Adrian Englhardt, and Klemens Böhm. An overview
and a benchmark of active learning for outlier detection with one-class
classifiers. Expert Systems with Applications, 168, 2021.

[70] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-
and-play diffusion features for text-driven image-to-image translation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

[71] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-
2011-001, California Institute of Technology, 2011.

[72] Zhou Wang. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4), 2004.

[73] Chaobin Xu, Wei Li, Xiaohui Cui, Zhenyu Wang, Fengling Zheng,
Xiaowu Zhang, and Bin Chen. Scarcity-GAN: Scarce data augmentation
for defect detection via generative adversarial nets. Neurocomputing,
566(C), 2024.

[74] Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang,
Lintao Ma, Yi Wang, Chenghao Liu, Bin Yang, Zenglin Xu, et al. A
survey on diffusion models for time series and spatio-temporal data.
arXiv preprint arXiv:2404.18886, 2024.

[75] Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E. Gonzalez,
Kannan Ramchandran, Charles H. Martin, and Michael W. Mahoney.
Test accuracy vs. generalization gap: Model selection in NLP without
accessing training or testing data. In 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2023.

[76] Qiuhua Yi, Xiangfan Chen, Chenwei Zhang, Zehai Zhou, Linan Zhu,
and Xiangjie Kong. Diffusion models in text generation: a survey. PeerJ
Computer Science, 10:e1905, 2024.

[77] Yue Zhao, Ryan Rossi, and Leman Akoglu. Automatic unsupervised
outlier model selection. Advances in Neural Information Processing
Systems, 2021.

[78] Yue Zhao, Sean Zhang, and Leman Akoglu. Toward unsupervised outlier
model selection. In IEEE International Conference on Data Mining,
2022.

[79] Chong Zhou, Chen Change Loy, and Bo Dai. DenseCLIP: Extract free
dense labels from CLIP. arXiv preprint arXiv:2112.01071, 2021.



10

[80] Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen.
AnomalyCLIP: Object-agnostic prompt learning for zero-shot anomaly
detection. In International Conference on Learning Representations,
2024.

[81] Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar
Dabeer. Spot-the-difference self-supervised pre-training for anomaly
detection and segmentation. In European Conference on Computer
Vision, 2022.

APPENDIX

A. Hyper-parameters for Diffusion-based Image Synthesis

We first discuss the impact of γ on diffusion-based image
generation, which controls the interpolation strength, shown in
Fig. 5. γ represents the relative strength of the content image
and should be high enough to introduce anomalous patterns.
γ also affects the SSIM from the original style image, which
suggests that if some assumptions about true anomalies are
known, image similarity scores can be used as a heuristic
for selecting diffusion hyper-parameters, as is done in prior
work [29]. For our anomaly detection tasks, we find that using
γ = 0.7 generates images that differ significantly from the
original style images, while preserving elements near the in-
class distribution.

Fig. 5: We compare values of γ used in the diffusion-based
generation. A higher value of γ corresponds to a stronger
weight for content in the resulting interpolation.

Fig. 6: We compare the diffusion model types and the num-
ber of iterations used for diffusion-based generation. Using
a higher number of iterations and the improved ImageNet
diffusion model results in larger changes to the normal images.

Fig. 7: We show the time taken to generate a single image
with T iterations using (i) the improved ImageNet diffusion
model and (ii) P2 diffusion model.

We next discuss the impact of T (the number of iterations)
and the type of diffusion model. In our work, we use T = 1000
during the reverse DDIM process of the improved ImageNet
diffusion model [51], which takes approximately 100 seconds
with a single RTX 3090 GPU. Thus, it takes approximately 2.8
hours to generate our 100-image synthetic validation dataset.
To speed up the diffusion process, one can use alternative types
of diffusion model or reduce T ; we compare the improved
ImageNet model to the perception prioritized (P2) diffusion
model from prior work [9], which provides weights trained
on the CUB and Flowers datasets directly. Fig. 7 shows
the average time taken to generate a single image using T
iterations for a given diffusion model, we find that P2 diffusion
models are faster; with only 250 iterations on the P2 model,
generating our entire synthetic validation dataset of 100 images
would take under 12 minutes. Fig. 6 shows the results of these
generations; using the improved ImageNet diffusion model and
a higher number of iterations introduces more disruptions to
the normal images. Determining the optimal tradeoff between
computation cost and image quality is left as future work.

B. Prompt Templates for CLIP-based Anomaly Detection

For our experiments in Sec. IV-C, we evaluated across a
set of ten candidate prompt templates, shown below. For the
results shown in Table I, “default prompt” is the first prompt,
and “prompt ensemble” is the average across all prompts. For
CUB and Flowers, only the term “bird” or “flower” is used in
the template. For MVTec-AD and VisA, we only perform mild
class-name cleaning: we remove trailing numbers from class
names and fully write all acronyms (e.g., “PCB1” is written
as “printed circuit board”). Unlike prior work [30], we do not
perform any other class-specific modifications.

% CLIP Templates for Flowers
‘a photo of [a {} flower, some flower]’
‘a cropped photo of [a {} flower, some flower]’
‘a dark photo of [a {} flower, some flower]’
‘a photo of [a {} flower, some flower] for inspection’
‘a photo of [a {} flower, some flower] for viewing’]’
‘a bright photo of [a {} flower, some flower]’
‘a close-up photo of [a {} flower, some flower]’
‘a blurry photo of [a {} flower, some flower]’
‘a photo of a small [{} flower, some flower]’
‘a photo of a large [{} flower, some flower]’

% CLIP Templates for CUB
‘a photo of [a {} bird, some bird]’,
‘a cropped photo of [a {} bird, some bird]’
‘a dark photo of [a {} bird, some bird]’
‘a photo of [a {} bird, some bird] for inspection’
‘a photo of [a {} bird, some bird] for viewing’
‘a bright photo of [a {} bird, some bird]’
‘a close-up photo of [a {} bird, some bird]’
‘a blurry photo of [a {} bird, some bird]’
‘a photo of a small [{} bird, some bird]’
‘a photo of a large [{} bird, some bird]’

% CLIP Templates for MVTec-AD and VisA
‘a photo of [a {}, a {} with defect]’
‘a cropped photo of [a {}, a {} with defect]’
‘a dark photo of [a {}, a {} with defect]’
‘a photo of [a {}, a {} with defect] for inspection’
‘a photo of [a {}, a {} with defect] for viewing’
‘a bright photo of [a {}, a {} with defect]’
‘a close-up photo of [a {}, a {} with defect]’
‘a blurry photo of [a {}, a {} with defect]’
‘a photo of a small [{}, {} with defect]’
‘a photo of a large [{}, {} with defect]’
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