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Abstract
Industrial control systems (ICS) manage critical physical pro-
cesses such as electric distribution and water treatment. At-
tackers infiltrate ICS and manipulate these critical processes,
causing damage and harm. AI-based approaches can detect
such attacks and raise alarms for operators, but they are not
commonly used in practice and it is unclear why. In this
work, we directly asked practitioners about current practices
for alarms in ICS and their perspectives on adopting AI to
support these practices. We conducted 18 semi-structured
interviews with practitioners who work on protecting ICS,
through which we identified tasks commonly performed for
alarms such as raising alarms when anomalies are detected,
coordinating operator response to alarms, and analyzing data
to improve alarm rule sets. We found that practitioners often
struggle with tasks beyond anomaly detection, such as alarm
diagnosis, and we propose designing AI-based tools to sup-
port these tasks. We also identified barriers to adopting AI
in ICS (e.g., limited data collection, low trust in vendor tech-
nology) and recommend ways to make AI-based tools more
effective and trusted by practitioners, such as demonstrating
model transparency through interactive pilot projects.

1 Introduction

Critical infrastructure (e.g., oil refineries, power grids, wa-
ter treatment plants, and manufacturing) relies on industrial
devices such as valves, motors, and pumps. These devices
are controlled by complex, interconnected systems known
as industrial control systems (ICS) [60]. As the scale of ICS
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grows, the potential harm caused by cyber-attacks on ICS in-
creases [57]. Attacks on the Colonial Pipeline in 2021 and the
Ukrainian power grid in 2016 highlight the potentially mas-
sive impacts of disrupting these critical industries [10, 36, 51].

To protect ICS, organizations typically use expert-defined
rules to detect anomalies in ICS that might indicate imminent
problems [5, 6, 11, 41]. Because rules are expensive to create
and often do not detect unforeseen anomalies, researchers
have proposed approaches based on artificial intelligence (AI)
to detect anomalies in ICS [17, 19, 23, 35, 37, 39]. However,
these systems are rarely used in practice; a recent survey
found that only 10% of ICS use any form of AI on process
data [15], and deployments of AI in ICS have only recently
emerged [16,54]. Suggested reasons for low adoption include
cost, complexity, and data availability [29, 33, 59].

To directly investigate why AI is not commonly used in ICS
and to explore new opportunities for adopting AI to protect
ICS, we conducted 18 semi-structured interviews with prac-
titioners who work on monitoring, operating, and securing
ICS in various industries and roles. Based on these interviews,
we identify tasks commonly performed for alarms in ICS as
part of an alarm workflow. Alarm workflows often involve
defining rules to detect anomalies, reading real-time data from
the ICS and raising alarms, responding to alarms, and modi-
fying alarm rulesets for efficiency and safety. We answer the
following research questions:

• RQ1: What types of data and systems are used for alarms
in ICS, and how suitable are they for AI?

• RQ2: What human tasks are performed with alarms in
ICS, and how can AI support them?

• RQ3: In organizations that operate ICS, what logistical
and cultural factors hinder AI adoption?

In answering these research questions, one particular chal-
lenge is that practitioners working with ICS typically do not
have experience with AI, which limits their ability to provide
details on how AI could be used to protect ICS. Thus, in our
interviews, we first performed a needs assessment of current
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practices for alarms in ICS. We asked practitioners how they
design, use, and maintain systems to raise alarms; how they
coordinate alarm response; and what challenges they experi-
ence with alarms. Since practitioners in ICS typically do not
use AI, we next asked about what benefits and barriers they
perceive to adopting AI in ICS.

Although most prior work that proposes AI for ICS secu-
rity focuses on centralized AI models for detecting anoma-
lies [23, 33], our findings suggest that other use cases for AI
are likely to be more promising in practice. We found (RQ1)
that data and systems for raising alarms are often not cen-
tralized, but historical data from alarms is. We also found
(RQ2) that practitioners often struggle with tasks beyond de-
tecting anomalies, such as diagnosing alarms and managing
alarm rulesets. We therefore propose creating tools for diag-
nosing and managing alarms on centralized, historical data.
Furthermore, we found (RQ3) important cultural barriers to
deploying and using tools in ICS, such as general skepticism
towards adopting new technology. We therefore recommend
ways to navigate these barriers; for example, given the impor-
tance of trust in ICS, we recommend that tool designers build
trust with practitioners by interactively demonstrating how
AI-based tools make predictions.

This paper is structured as follows: we review background
in Sec. 2 and describe our study methodology in Sec. 3; we
convey our findings for current practices for alarms in ICS
in Sec. 4 and practitioners’ perceptions of using AI in ICS in
Sec. 5; finally, we answer our research questions and provide
recommendations for adopting AI to protect ICS in Sec. 6.

Connecting our work to cybersecurity: Our primary inter-
est in this investigation is learning how to help detect attacks
on processes controlled by ICS. At the process level, detect-
ing these attacks is intertwined with detecting non-malicious
anomalies. Hence, our investigation by necessity examines
participants’ perspectives on the detection of all anomalies,
and not just those caused by attacks.

2 Background and related work

In this section, we provide background on ICS (Sec. 2.1) and
describe related prior work at the intersections of ICS, AI for
cybersecurity, and human factors (Sec. 2.2).

2.1 Industrial control systems
An ICS monitors and controls a physical, industrial process.
ICS use programmable logic controllers (PLCs) to read pro-
cess information from sensors (e.g., temperature, pressure, or
flow sensors), execute controller logic, and send commands
to actuators (e.g., valves, pumps, or motors). To coordinate
and communicate between multiple PLCs, systems such as
supervisory control and data acquisition systems (SCADA),
distributed control systems (DCS), or human-machine inter-
faces (HMIs) are often used. ICS devices are commonly or-

ganized according to the Purdue model [31], which defines
a hierarchy based on logical proximity to the physical pro-
cess. Fig. 1 shows a typical categorization of ICS devices in
the Purdue model, including sensors and actuators (level 0);
PLCs (level 1); SCADA, DCS, and HMI (level 2); database
and analysis functions (level 3); and business-level functions
such as email (level 4 and beyond). Systems at levels 0–3 are
commonly referred to as operational technology (OT), and
systems at levels 4 and higher are commonly referred to as
information technology (IT) [44].

Given their critical nature, adversaries have strong incen-
tives to attack ICS for harm or profit. For example, the Colo-
nial Pipeline attack in the United States disrupted oil produc-
tion for several days and cost over 4 million US dollars in
ransom [10], attacks on the Ukrainian power grid caused over
200,000 people to lose power for several hours [36,51], and an
attack on a German Steel Mill caused equipment damage [70].

2.2 Related work
In this section, we provide context for our study by describ-
ing related work that proposes AI-based anomaly detection,
related work that studies security practitioners’ perceptions
of AI-based tools, and related work that studies practitioners
who work with ICS.

ICS anomaly detection. To protect ICS from harm, re-
searchers have proposed process-level ICS anomaly detec-
tion systems based on rules [1, 22], physics-based equa-
tions [26, 66], statistical modeling [4, 28, 62], and deep learn-
ing [23, 35, 37]. Although AI-based anomaly detection is
commonly proposed in research [17, 19, 23, 33, 35, 37, 39]
and some deployments of AI in ICS have been reported in
practice [16, 54], no prior work has broadly studied ICS op-
erators’ perspectives of these AI-based approaches. In this
work, we investigate operators’ perspectives on how anomaly-
detection systems are currently used and opportunities for AI
to improve current practice.

Alarm workflows in security operations centers. Secu-
rity operations centers (SOCs) are organizational units re-
sponsible for securing an entire organization, focusing on
information technology (IT) networks and systems. A variety
of prior work studies the challenges that SOC operators face
in their day-to-day roles: alarm response [2], alarm ruleset
management [63], and organizational challenges [34]. Alarm
workflow tasks in SOCs are similar to those performed in ICS,
but they interact with fundamentally different technologies.
SOCs and IT systems operate at high levels of the Purdue
model (i.e., level 4) and do not directly interact with oper-
ational technology (OT), such as PLCs or SCADA. IT and
OT professionals exhibit different cultural beliefs about ICS
security [25], and our work focuses on alarm workflow tasks
for OT systems, performed by OT professionals.
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Figure 1: We show how ICS devices are categorized in the Purdue model of ICS [31]. Generally, devices further from the
industrial process are categorized into higher levels. For example, sensors that directly read process information are at level 0,
PLCs that read data from sensors are at level 1, a DCS that manages multiple PLCs is at level 2, and a historian database of
process information is at level 3. ICS commonly use firewalls to separate levels 0–3 from higher-level IT systems, also known as
the “demilitarized zone” (DMZ).

Security practitioners perceptions’ of AI-based tools.
Prior work has studied the perceptions of IT security prac-
titioners, either focusing on their perceptions of a specific
AI-based tool [46, 48] or by studying their perceptions of AI
in general [42]. These works identify promising uses for AI-
based explanations to help practitioners understand security
events, but also identify concerns with accuracy, trust, and
usability. In organizations that manage ICS, we found that
dedicated roles for OT security are uncommon, as described
in Sec. 4.4. We therefore focus on making recommendations
for AI-based tools aimed at OT practitioners in ICS.

Working with ICS. Prior work has also studied the perspec-
tives of practitioners who work in ICS operations [9, 56] and
ICS security [25, 55], identifying various technical, cultural,
and organizational challenges. ICS can suffer from a lack of
standardization [9, 55, 56], computational constraints [9], and
tensions between IT and OT professionals [25]. Furthermore,
these works found that practitioners who work with ICS often
mistrust vendor tools [56] and disagree on the significance of
cybersecurity threats [55]. In our work, we observed similar
challenges to those reported in prior work (Sec. 4.4), but we
focus specifically on how these challenges affect the adoption
of AI for alarm workflows in ICS.

3 Participants and methodology

We interviewed 18 practitioners who work with ICS in mul-
tiple industries and roles. In this section, we describe: how
we recruited participants (Sec. 3.1), how we conducted semi-
structured interviews (Sec. 3.2), our methodology for ana-
lyzing interview responses (Sec. 3.3), our consideration of
research ethics (Sec. 3.4), and study limitations (Sec. 3.5).

3.1 Participant recruitment and demographics
Our target population is practitioners who work on safeguard-
ing and securing ICS by performing alarm workflow tasks or

by managing or supporting alarm workflows. To recruit partic-
ipants from this population, we used purposive sampling. We
directly contacted individuals in our professional networks;
we advertised on ICS security mailing lists; we emailed utility
providers with public contact information; we posted flyers
on LinkedIn and X (formerly Twitter); and we sent direct mes-
sages on LinkedIn to people whose roles matched ICS-related
keywords such as “SCADA” or “Control System.”

In our initial recruitment text, we used the terms “anomaly
detection” and “security,” and we failed to recruit participants;
multiple organizations responded that they did not perform
anomaly detection or did not have any security-relevant topics
to discuss. Given the sensitive nature of cyber-attacks on criti-
cal infrastructure, we believe that participants were unwilling
to discuss these topics or believed that they were not relevant
to them. We then updated our recruitment text to state that we
were interested in “monitoring tools” and “alarm response.”
We were then able to successfully recruit study participants
and discovered that, in fact, they do use systems to detect
anomalies and acknowledge that cybersecurity concerns can
impact alarm response. This experience serves as a useful les-
son that, when interacting with practitioners who work with
ICS, using appropriate terminology is important.

Potential study participants then filled out a screening sur-
vey, which asked about their industry, day-to-day tasks, and
experience with ICS, cybersecurity, and AI. We screened par-
ticipants for those who demonstrated experience with operat-
ing, managing, or developing tools for alarm workflows. We
also limited study participants to those located in the USA, al-
though some participants reported on prior experiences from
working in other countries.

Table 1 provides an overview of study participants’ demo-
graphic information. Participants worked for two different
types of organizations: plant owners, organizations that op-
erate an ICS, and vendors, organizations that support alarm
workflows for multiple ICS. Of the participants who worked
for plant owners, six participants worked for local municipali-
ties across five different US states.



2,63], we

ID Industry Role # Years Exp.
OT Sec. AI

P1 Electric (solar) Manager 10 0 10
P2 Oil & Gas Engineer 1 0 0
P3 Electric (grid) Engineer 12 4 6
P4 Water Manager 10 0 0
P5 Water Engineer 2 0 0
P6 Water Manager 15 10 0
P7 Oil & Gas Manager 18 0 0
V8 Electric (gen.) Consultant 50 24 0
P9 Manufacturing Engineer 13 0 0

V10 Electric (gen.) Engineer 20 15 4
P11 Electric (grid) Manager 10 10 0
V12 HVAC Engineer 5 2 0
P13 Oil & Gas Engineer 4 0 0
P14 Manufacturing Engineer 7 0 0
V15 Electric (grid) Engineer 25 10 0
V16 Oil & Gas Consultant 8 13 0
P17 Oil & Gas Engineer 16 14 4
P18 Water Manager 35 10 0

Table 1: Demographic information for the 18 participants in
our study: their industry; their role; and their years of experi-
ence with operational technology (OT), cybersecurity (Sec.),
and AI. 13 participants primarily worked for a plant owner
that operates one ICS (marked “P”), while five participants
primarily worked for a vendor or as a consultant that supports
multiple ICS (marked “V”).

Similar to challenges reported in related work [2, 63], we
found it difficult to recruit operators who worked as the first
point of contact in alarm response for an ICS. Our interviews
revealed that ICS are often monitored 24/7 by operators who
are often overworked. Thus, these operators likely could not
provide the time to participate in an interview for research pur-
poses. Although we could not recruit operators who worked
as the first point of contact in alarm response at the time of
recruitment, the participants in our study manage these opera-
tors, perform secondary alarm response tasks, or worked as
operators in the past. Thus, participants were able to discuss
operator perspectives through second-hand experience and
prior first-hand experience.

As described in Sec. 3.3, we iteratively performed qualita-
tive analysis after establishing an initial list of codes. We deter-
mined that recruitment was complete once we observed that
no new qualitative codes directly pertaining to our research
questions emerged (inductive thematic saturation [52]).

3.2 Interview methodology

We conducted 60-minute, semi-structured interviews over
Zoom. Participants filled out a consent form before starting
the interviews. We recorded interviews with participants’ con-
sent or took notes if participants did not consent to recording.

We divided our interview into four sections. In part I, we
asked the participant about their professional background and
day-to-day responsibilities. In part II, we asked about current
practices for alarms in ICS: how data is collected and alarms
are raised, how alarm response is performed, and how these
processes are managed. In part III, we asked about vendor
tools and how they are adopted in ICS. Finally, in part IV,
we asked participants about their perceptions of using AI in
ICS. When interviewing participants who worked for vendors,
instead of asking about the practices of a single ICS, we asked
about common practices and trends observed from working
with clients. To ensure question clarity, we performed a pilot
test of our interview script with two researchers (who are not
directly involved with this work) with experience in human-
subjects research in ICS contexts. Our interview script can be
found in Appendix A.

3.3 Analysis methodology

To prepare our data for analysis, we transcribed interview
recordings using an automatic transcription service. We edited
all transcripts and notes for correctness and anonymity by re-
moving specifically identifying information related to people,
places, and companies before deleting the original recordings.

To analyze our interview data, we used inductive thematic
analysis [12]. After completing the first 16 interviews, two
researchers iteratively and independently reviewed each tran-
script, creating a list of initial codes that captured concepts
relevant to our research questions. Once all interviews were
complete, the two researchers met to merge codes and group
related codes into themes, producing our initial codebook.
We then refined the codebook using an iterative, consensus-
based approach to ensure that the two researchers shared a
conceptual understanding of the codes and could apply the
codes consistently. The two researchers independently coded
two transcripts using the initial codebook, met to identify
disagreements and update code definitions, and resolved all
discrepancies in the codes. Using the refined codebook, both
researchers independently coded four more transcripts, met
to discuss codes, and found no substantial disagreements on
the definitions or usage of the refined codes. After reaching
consensus on the codebook and its application, one researcher
subsequently coded the remaining interviews. To ensure con-
sistent application of codes, another researcher reviewed these
codes for correctness. Our final codebook and code counts
are in Appendix B.

Following suggested practices in qualitative HCI re-
search [40, 47], we do not compute inter-rater reliability met-
rics since the goal of our study is to identify emergent themes
rather than to quantify the frequency of topics. We ensured
consistency by refining the codebook when disagreements
were found in double-coded interviews and reviewing each
single-coded interview. Furthermore, we do not report the
exact counts of participants when discussing results since our
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Figure 2: When reporting the proportion of participants in
results, we use qualitative terms instead of raw counts or per-
centages. We convert percentages to terms based on the scale
shown, using a mapping similar to that of prior works [21,27].

primary findings are qualitative and we gathered perspectives
from a diverse but not necessarily representative sample of
practitioners. We instead follow a common methodology from
prior work and use qualitative terms to illustrate the preva-
lence of themes [21, 27], by mapping percentages to terms as
shown in Fig. 2.

3.4 Ethics

Our study was approved by our institution’s Internal Review
Board (IRB). Participants were compensated $60 USD for
completing interviews, a similar rate to prior work that inter-
views domain experts [32, 38, 42]. Following best practices,
we minimize participant harm by obtaining informed con-
sent, anonymizing transcripts, and asking participants not to
share confidential information about their organization or
role [7]. We follow these principles to protect participants’
individual privacy, to protect participants from potential reper-
cussions from their employer, and to protect their employers
from increased risk by disclosing sensitive information about
cybersecurity practices.

We also weighed the benefits of publishing this work, which
reveals security practices in ICS, against the risks of releasing
more information to adversaries. We concluded that the risks
were minimal since ICS are already commonly attacked [57],
and industry surveys already disclose that AI-based tools are
not commonly used in ICS [15].

3.5 Limitations

The responses of participants we interviewed may not fully
represent the perspectives of current, first-response ICS oper-
ators, since they do not currently serve as the first response to
ICS alarms. Some participants in senior roles had not worked
as operators for several years, and their responses may not
fully represent all operators due to organizational communi-
cation barriers and changes in the industry. Furthermore, all
study participants were based in the USA, which may limit
the applicability of our findings to other countries.

We describe participants’ suggestions for AI adoption in
Sec. 5. Most participants lacked experience with AI, and so
potential misconceptions about the requirements and capabil-
ities of AI may affect the feasibility of their suggestions.

4 Results: Current practices for alarms in ICS

In this section, we report our findings for how ICS operators
use systems for alarms and perform alarm workflow tasks.
Since AI is not commonly used in ICS and most practitioners
who work with ICS lack experience with AI [15] (including
the participants of our study, shown in Table 1), we use an
indirect approach to investigate our research questions by
first asking about current practices for alarms in ICS. As a
pre-requisite for answering RQ1, we ask participants about
systems that read data from an ICS and raise alarms (Sec. 4.1).
To support our investigation of RQ2, we ask participants about
human tasks performed for alarms (Sec. 4.2) and challenges
with performing these tasks (Sec. 4.3). Finally, for our analysis
of RQ3, we ask participants about ICS-specific factors that
affect alarm workflows (Sec. 4.4) and adopting vendor tools in
alarm workflows (Sec. 4.5). Although the individual processes
used for each ICS vary, we identify common processes for
alarms across ICS, and we show a categorization of these
processes in Fig. 3.

4.1 Systems for raising alarms

Anomaly-detection systems, whether AI-based or rule-based,
rely on real-time data from the ICS, so understanding how
this data is collected is critical to understanding how AI can
be used for alarms in ICS.

What devices and systems are used? Referring to the de-
vices described in Sec. 2.1, almost all participants who worked
for plant owners use PLCs. Almost all participants also use
a level 2 system to coordinate multiple PLCs—some partici-
pants use a DCS and some participants use SCADA. About
half of participants report using one or more control rooms,
which are centralized locations for operators to monitor ICS
and delegate alarm response. In contrast, some participants
reported that their organization does not use control rooms;
operators instead interact with PLCs through co-located HMIs,
which are distributed across the industrial process. Finally,
some participants report that their organization uses a data
historian, which stores process and alarm data in a central
database for post-hoc analysis. We describe these post-hoc
analysis tasks in Sec. 4.2.

Which organization manages these devices? Although
plant owners use various devices for monitoring and control-
ling industrial processes, they do not necessarily program
or manage these devices. Some participants work for plant
owners who rely on vendors to manage their devices; a few
participants reported that this was common in their industry.
In contrast, some participants work for plant owners that em-
ploy their own staff to program and manage their devices. We
describe how vendors affect alarm workflows in Sec. 4.5.
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Figure 3: We found that alarms are managed through a set of processes in an alarm workflow. We show the different tasks in
alarm workflows, categorized into three stages: (i) setting up systems for alarms, (ii) responding to alarms, and (iii) analyzing
alarms post-hoc to determine root-causes and update alarm conditions.

A lot of them actually contract out their PLC, SCADA, net-
working, some of the more high level stuff. Actually, almost
every city that I know does that. –P6

What behaviors are alarms used for? All participants re-
ported using alarms to detect anomalies in process values,
although the reasons for detection varied. Most participants
mentioned safety: process alarms ensure the safety of the
physical process or the process equipment. Some participants
mentioned non-critical reasons, such as to ensure adequate
production or to ensure that regulations are being met. Some
participants also reported using alarms that were not related
to process values; these include alarms to detect component
failures (e.g., an unresponsive PLC), cybersecurity events, or
physical security events. Finally, some participants reported
special types of alarms, such as informational alarms, mainte-
nance alarms, and alarms written for specific, prior incidents.

How are alarms defined? Most participants reported that
alarms were defined by rules; alarms were raised if a process
value exceeded an upper or lower limit. About half of partici-
pants additionally reported that more complex logic was used,
such as using rates of change or combinations of rules.

We have combined conditions to generate a new alarm or
suppress some alarms. For example, if we trip something, we
don’t need to see alarms from every downstream device. –P17

Where is alarm logic implemented? Since various types
of devices are used in alarm systems, the placement of alarm
logic also varies. Most participants reported that alarm logic
was written in PLCs; these alarms only evaluated conditions
based on data available to the PLC. Some participants re-
ported that alarm logic was instead written in DCS or SCADA;
these alarms were often more complicated and required data
from multiple PLCs. Finally, most participants also reported
that alarms were written directly into level 0 devices (e.g.,
sensors), referred to as “safety systems.” Safety systems can
perform commands (e.g., shutting off a valve) without human
involvement or inter-device communication and often send
alarms to higher-level systems for diagnosis.

Where are alarms displayed? Although alarm logic is
written into devices at levels 0–2, alarms are not necessarily
displayed in these devices. Some participants reported that
alarms from PLCs were forwarded to DCS, SCADA, or HMI.
Devices in levels 0–1, such as safety systems and PLCs, often
lack an operator interface, so alarms from these devices are
forwarded to human operators in a level 2 system.

The SCADA is pulling from the PLC and if there’s an alarm,
it’s going to display that on the SCADA itself. –P14

However, a few participants reported that alarms were not
always forwarded. In some cases, alarms could be raised
without visibility to a level 2 system.

Some of those alarms will not go to SCADA, at least not
directly. [. . .] If a relay causes a breaker to open, the relay
knows why it opened, SCADA would see the breaker open, but
if you were looking at your SCADA logs, you would never get
any indication as to why that breaker opened. –V15

Takeaways for AI. Participants reported using a variety
of devices for raising alarms, which can range in data avail-
ability and computational power. Additionally, some plant
owners rely on vendors to manage these devices. These dif-
ferences make it unclear who would manage an AI-based tool
for alarms, and where it should be deployed in an ICS. We
also found that alarm conditions use logic and implementa-
tions that may differ from AI-based anomaly detection. For
example, alarms use various data modalities (e.g., network
and process data) and custom logic that may not correspond
to learnable patterns in a dataset.

4.2 Human tasks in alarm workflows
We asked participants about human tasks performed in alarm
workflows, such as responding to alarms and managing alarm
rulesets. We investigated if and how humans performing these
tasks could be supported by AI.

Who responds to an alarm? Most participants reported
that an on-site operator is the first to respond to an alarm. For



a majority of alarms, operators are able to respond appropri-
ately, either by performing the required remediation action
or by acknowledging the alarm as a non-issue. If the proper
response could not be determined or performed, operators
would then escalate to higher levels of authority for help. A
few participants who worked for plant owners also reported
contractual agreements with vendors for alarm response. A
few participants reported that they served as the second or
third point of alarm response for an ICS.

The alarm does not go away or it gets worse, then you escalate
up to the next line. I’ll definitely get involved in troubleshooting
and trying to figure out stuff like that. –P13

How is the response to an alarm determined? Most par-
ticipants reported using structured protocols to remove ambi-
guity in alarm response. About half of participants reported
that alarm response was dictated by pre-defined categories for
alarms.

The operator knows if an alarm comes in color red, you have
to address that right away. If it comes in this color, you just
call this person. If it comes in this color, you don’t even have
to do anything. –V15

However, structured protocols do not cover all cases of
alarm response. Most participants reported that alarm diagno-
sis sometimes relies on operator expertise—operators diag-
nose alarms by correlating them with auxiliary data in an intu-
itive, unstructured process. Despite using structured alarm re-
sponse protocols and auxiliary data sources, less-experienced
operators can struggle with alarm diagnosis.

I think that’s probably our greatest challenge: training the
staff that’s still fairly new and still learning the processes what
the appropriate level of response is. –P18

How are alarms analyzed post-hoc? In cases where the
real-time alarm diagnosis and response was incorrect, organi-
zations analyze historian data for root-cause analysis. About
half of participants reported that their organizations have spe-
cific teams or roles for asynchronous, post-hoc alarm analysis.

Another team is looking through our alarm history and iden-
tifying where we have ongoing issues or where we didn’t re-
spond to something the way we should have. –P7

A few participants reported analyzing alarms post-hoc
for alarm management. Participants mentioned the ANSI-
ISA 18-2 standard on alarm management [30] and discussed
alarm management tasks such as reviewing and updating
alarm conditions to reduce operator fatigue. Organizations
perform alarm management by reviewing historical alarm
data through regular, cross-functional meetings to ensure that
existing alarms are effective. If needed, alarms are added,
removed, updated, or re-categorized.

We have alarm management expectations. Once a week, as an
engineering team, we meet and review all of the alarms that
came in over the last week, and try and figure out, was this a
good, useful, real alarm? [. . .] And you can make changes to
the alarm set points or things like that. –P13

Some participants did not explicitly mention “alarm man-
agement” but reported other processes for managing alarm
rulesets. Some organizations regularly test alarms, some orga-
nizations use tools to analyze alarm data, and some organiza-
tions allow operators to update alarms themselves.

We use an alarm analysis tool. [. . .] It’s doing SQL queries to
find repeat offenders or numbers per hour. –P7

Finally, a few participants explicitly suggested that, since
their historian data was centralized and labeled, an AI-based
tool could be trained to help with alarm analysis.

So we now have 1000s upon 1000s of examples of: the data
was doing this at the time, it led to this root cause analysis,
and it led to this action. And I think that’s something that we
can begin to look at applying deep learning algorithms to,
because we have the necessary data to start training that. –P1

Takeaways for AI. Although most alarm response is per-
formed through structured protocols, we found that some tasks
for alarms rely on intuition and expertise, such as alarm diag-
nosis and alarm management. These tasks involve post-hoc
analysis of alarm data and already include automated pro-
cesses and tools, which suggests openness towards using AI
for these tasks.

4.3 Challenges with alarms
In this section, we describe common challenges reported by
participants when working with alarms. Participants reported
challenges across alarm workflows, from correctly diagnosing
alarms to deciding if alarm rulesets were effective.

Nuisance alarms. Most participants discussed “nuisance”
alarms, which do not correspond to genuine harm, do not
convey useful information, and are not actionable. Operators
are burdened with recognizing and acknowledging nuisance
alarms to remove them from user interfaces, and some partic-
ipants reported that it can be difficult to distinguish nuisance
alarms from genuine alarms. When asked about the frequency
of alarms at the ICS they worked with, participant responses
ranged from two to 250 alarms per hour. A few participants
mentioned a growing awareness about alarm fatigue and its
potential to increase the likelihood of operator errors.

Processes may have some variances that are going to cause
nuisance alarms. Eventually, they run into, "Oh, I’ve ignored
too much. Now I’ve got myself into a hole." So we try to be
very judicious about what we what we alarm about. –V10



Some participants reported using strategies to mitigate nui-
sance alarms. These include alarm management (described
in Sec. 4.2), defining guidance for alarms (e.g., “alarm phi-
losophy”), using tools to suppress nuisance alarms, and using
tools to identify nuisance alarms. One participant described
their experience reviewing and updating alarm rulesets at their
organization, reporting that it required significant amounts of
time and labor.

We looked at every single alarm that we have, and then went
through and wrote troubleshooting guidance, and then chal-
lenged if you need the alarm, and then what the alarm point
should be. And that was a significant year and a half of, at
least 10 hours a week. –P13

Challenges in alarm diagnosis. Even if an alarm is deter-
mined to be genuine, alarm diagnosis can still be challenging.
Some participants reported limited access to data as a chal-
lenge for alarm diagnosis. In some cases, due to missing
coverage in monitoring or logging, operators would need to
physically travel to properly diagnose an alarm, limiting their
ability to respond quickly.

It could be 10 minutes to an hour or two, in some parts of the
country, of drive time before you even get eyes to see what’s
going on. –P11

A few participants reported that too much information could
overwhelm operators and hinder diagnosis. Providing data
to operators requires a balance between sending sufficient
diagnostic information and avoiding information overload.

We weren’t rationalizing what we were bringing in, trying to
bring everything back that we could. And so getting any value,
really, out of those alarms was difficult. –P7

Takeaways for AI. Participants reported challenges with
alarm workflow tasks, particularly for alarm management
and alarm diagnosis. We suggest that AI could help mitigate
these challenges and improve these tasks, and we describe
participant perspectives on using AI for alarm workflow tasks
in Sec. 5.2.

4.4 Factors that affect alarm workflows
In this section, we describe factors specific to ICS that affect
how alarm workflows are designed and executed. We identify
opportunities for improvement and pitfalls that should be
avoided when using AI for alarm workflows in ICS.

Limited resources in ICS. Plant owners often have small
OT and cybersecurity budgets [49], introducing constraints on
technology and personnel. Most participants discussed how
these constraints made alarm workflow tasks more difficult.

About half of participants who worked for a plant owner
reported personnel constraints, including understaffed teams

and limited technical skills. These constraints limited plant
owners’ abilities to improve their processes for alarms, as they
were occupied with critical operations and alarm response.

I’ve got one assistant now and I feel like I could keep three
assistants busy. There’s this triage of things that would be
valuable to do versus things that are urgent. –P4

Participants also reported challenges with managing or us-
ing technology in ICS. Some participants reported challenges
with managing OT networks, which caused problems with
data visibility and trust. A few participants reported concerns
with device capabilities, in terms of both computation and
networking. A few participants also reported challenges with
updating and replacing ICS devices. Given these technical
constraints, some participants expressed doubt that adopting
advanced tools for alarms would help.

They wrote a little report on it. Here’s some potential alter-
natives. [. . .] But the alternatives may not work any better
because the problem may really be that our network is unsta-
ble. –P4

Perceptions of safety in IT vs OT. About half of partic-
ipants reported tensions between informational technology
(IT) and operational technology (OT) professionals; such ten-
sions have been studied in prior work [25, 67, 69]. We found
that these tensions can add friction to alarm workflow tasks
when IT professionals interact with OT systems.

People that came up from the IT side, their mental model of
digital systems, it’s not working, I’ll just reset it. I can’t do that
if I’m running a power grid. [. . .] Because IT capabilities are
continuing to get pushed closer to physical systems, people
are coming from the IT side. That’s where I think a majority
of the mental model change needs to happen. –P11

We found that safety, rather than security, was the focus for
most participants. About half of participants acknowledged
that ICS security was relevant to their work, since attacks on
ICS could affect systems used for alarms. However, some
participants reported that their organization does not use OT
security tools, instead reporting that they believed security
was the responsibility of IT.

A lot of the industrial control equipment, your PLCs and stuff,
are pretty vulnerable. If somebody can get to them over a
network, we feel like we’re already essentially screwed. So the
emphasis is more on the IT side and keeping those things off
the network. –P4

Of the participants who work for vendors, almost all re-
ported that concerns about security emerged in their discus-
sions with plant owners, which affected their practices for
monitoring and connectivity.

Some people will not connect [relays] to SCADA because
there’s a worry if your SCADA system had a problem, mainly
a cyber problem. [. . .] By isolating it completely, you’ve got
another level of confidence. –V15



Government regulations. In some industries, government
regulations mandate which monitoring, alarms, and security
practices must exist. Of the four participants who worked
for plant owners in the water industry, half reported that they
wrote alarms for certain process values because they were
required by regulation. Most participants who worked in the
electric industry reported on how NERC CIP (North Amer-
ican Electric Reliability Critical Infrastructure Protection)
standards [61] impact their systems for alarms. In some cases,
regulations would cause plant owners to consider the trade-
off between increased monitoring and the additional cost of
required compliance.

Does the device have connectivity? If it does have connectivity
then you’ve got to follow these extra rules. But if you can say
the device has no connectivity, then you don’t have to answer
those next questions. –V15

A few participants also reported on differences in regula-
tion across industries. One participant commented specifically
on how regulation could affect AI adoption, stating that NERC
CIP would serve as a barrier for adopting AI in the electric
industry. Developers of AI-based tools will therefore need
to meet NERC CIP regulations for adoption in the electric
industry.

If it’s like oil and gas, where it’s a well-known, well-
documented process, they’re more likely to embrace AI type
stuff. If it is a power-gen aeroderivative turbine, a lot of times
it’s going to be very human centric, because they cannot docu-
ment the AI-ness for NERC CIP. –V10

Takeaways for AI. Several factors can limit how alarm sys-
tems are used and how alarm workflow tasks are performed:
difficulty updating devices, mismanaged OT networks, under-
staffed and undertrained teams, cultural friction between IT
and OT professionals, and restrictive government regulations.
Tool designers must successfully navigate these barriers for
effective adoption in ICS alarm workflows.

4.5 Adopting vendor tools in ICS
In Sec. 4.1, we reported that some plant owners have con-
tracts with vendors for monitoring and alarm response. This
suggests that vendors could potentially be the driving factor
towards adopting AI for alarm workflows in ICS. Since most
existing tools are not based on AI, we asked participants about
how vendor tools in general are evaluated and adopted into
ICS. We discuss participant responses when asked specifically
about adopting AI in Sec. 5.

What barriers hinder adoption? Almost all participants
reported that adopting vendor tools in ICS is difficult. Partici-
pants reported concerns with vendor tools such as high cost,
requirements for skilled personnel, lack of customization, and
a lack of trust.

You need personnel, you need people trained on new tech-
nology, if you want to put in new technology. And that was a
problem with certain brands. –P5

Some participants reported that plant owners prefer to keep
their systems homogeneous under a single vendor; many ven-
dors provide solutions across the ICS stack for control logic,
alarms, and OT networks.

There’s better stuff out there that we could be using, but our
investment in <Brand A> versus what it would cost and the
amount of work it would take me to switch over to <Brand B>
is pretty unfeasible. –P6

What values are important for adoption? Participants
reported that quantitative criteria were not frequently used to
evaluate vendor tools. Some participants reported that metrics
like accuracy or F1-scores, commonly used in ICS anomaly
detection research [23], were not meaningful to them. Instead,
almost all participants reported that tools were evaluated qual-
itatively. Values such as brand reputation, positive discussions
with vendors, and positive recommendations were reported as
most important. A few participants mentioned vendors that
provide AI-based tools for ICS, but reported that they were
mostly not yet trusted by the industry.

You could do all of this testing to say, what’s the percentage
of identified anomalies versus unidentified anomalies? There’s
things like that. Yeah, not at my level. –P8

Who decides to adopt new technology? Finally, we found
that who made tool acquisition decisions varied. Some par-
ticipants reported that a cross-functional team decided if a
vendor tool was adopted, whereas some participants reported
that practitioners who work with ICS, including the potential
end-users, were often excluded from these decisions.

Some of that decision making, sadly it’s going to be some
really slick talking salesman talking to an engineer that will
never work with that SCADA system. And then the people that
use that SCADA system aren’t going to have a say in what
they’re using. That’s just the way it is. –P6

Takeaways for AI. Tool adoption in ICS is heavily based
on trust and reputation. Detection-based metrics, which are
used to compare AI models in research, are not used to moti-
vate adoption. Tool designers and vendors should therefore
develop new metrics that better convey trust and build their
reputation with ICS insiders.

5 Results: Perceptions of AI

In the final part of our interview, we asked participants directly
about their perceptions of using AI in ICS. We allowed partic-
ipants to respond based on their own conceptual model of AI,
but since most study participants had no experience with AI



these suggestions(shown in Table 1), we acknowledge that these suggestions
may not necessarily be practical.

We describe participants’ conceptual models of AI
(Sec. 5.1), perceived benefits of adopting AI (Sec. 5.2), and
perceived barriers to adopting AI (Sec. 5.3). Combined with
our findings of current practices and challenges (Sec. 4), these
responses reveal opportunities and challenges for using AI to
support alarm workflows in ICS and guide our recommenda-
tions in Sec. 6.

5.1 Conceptual models of AI
Given the lack of participant expertise in AI, we first establish
and describe participants’ mental models of AI. In this study,
we define AI to be any technology that uses historical data to
learn patterns and makes predictions on new data, such as neu-
ral networks [17, 23, 35], large language models (LLMs) [58],
SVMs [3, 53], and confidence intervals [18]. We found that
all participants demonstrated some understanding of what
AI was and its capabilities. Most participants mentioned a
specific model, such as LLMs, neural networks, or linear re-
gression models. The remaining participants did not mention
a specific model, but correctly referred to AI as technology
that learns and makes predictions from data.

5.2 Perceived benefits of adopting AI in ICS
Some alarm workflow tasks involve processing large amounts
of data and seeing complex patterns. Based on their under-
standing of AI and its capabilities, most participants thought
AI was well suited for such tasks.

Making alarm workflow tasks more efficient. About half
of participants believed that using AI would save operators’
time. In Sec. 4.4, we reported that ICS operations teams are
often understaffed and fatigued, and AI could help reduce
this burden. About half of participants believed that AI could
outperform humans at some tasks, such as seeing complex
relationships in data or avoiding distractions.

If there was some kind of machine learning, it might notice
things like, these alarms happen when you’re running that
motor over there which you wouldn’t think is related. –P4

A few participants who worked for plant owners reported
trying LLMs for alarm diagnosis, outside of their organiza-
tion’s established alarm workflows. These participants tried
using LLMs to diagnose previously resolved incidents. Partic-
ipants reported positive experiences with LLMs, which were
able to correctly diagnose the incidents and strengthened their
belief that AI could provide value in similar circumstances.

In the prompt, I put the question: we know that a certain
equipment was tripped, so we asked to find why it’s tripped.
. . . We spent like a whole bunch of hours, but this model for 10
seconds, and having 30% of information we had, gave us the
cause of the trip. –P17

5.3 Perceived barriers to adopting AI in ICS

In Sec. 4.4, we described barriers to adopting vendor tech-
nology in ICS. Echoing these findings and based on their
understanding of what AI is and its requirements, participants
reported their perceived barriers to adopting AI in ICS.

Limited compute and data availability. Participants re-
ported concern that using an AI-based tool would require data
and computational infrastructure beyond their organization’s
capabilities. About half of participants reported that data avail-
ability was a barrier to adopting AI because their data quality
is too poor, their data is not sufficiently labeled, or that there
would be IP issues with AI-based tools accessing their data.

The mistake would be: Hey, we have this incredible system
that can detect all these problems. [. . .] But no site manager
wants to set them up with the massive data requirements to
make that product run. –P1

Limited people with AI expertise. Some participants re-
ported concerns with finding and hiring the specialized staff
required to use AI-based tools. On the other hand, a few par-
ticipants suggested that adopting AI could help with staffing
issues, suggesting that using AI could attract a younger, more
skilled workforce to ICS.

You need the person who knows how the process is controlled,
how alarms are generated, and how an LLM works, which is
not easy to find. –P17

Low trust in AI. Most participants reported that, since ICS
are so critical, they needed tools that were trustworthy. About
half of participants reported concerns with AI’s lack of trans-
parency or tendency to make errors. These concerns made it
difficult to convince plant owners to adopt AI-based tools.

The customer, he doesn’t trust [AI] in control at all. [. . .] If you
give them a method which has some problem with robustness,
it can cost him millions if he got to shut down activity. –V12

When asked about ways to improve AI in general, some
participants recommended that AI reduce overconfidence and
some participants recommended that AI be more transparent.

There are many wrong ways and there’s a few good ways to
implement [AI], and the good ways all involve: Here’s how
it works, here’s what it’s looking at, breaking it down, and
putting a lot more transparency behind it. –P11

Participants also suggested methods to build trust in AI-
based tools before adoption: allowing practitioners to inter-
actively test with real data, establishing benchmarks for AI-
based tools in ICS, adding explanations to predictions, or
ensuring that tools were only used as an assistant to human
operators.



Around alarms, I would say, starting as an assistant, because
there’s no way it’s going to have all of the experience and all
of the information necessary to be 100%. But I think it could
do a really good job of helping you. –P7

6 Analysis and recommendations

In this section, we answer our research questions and provide
recommendations for adopting AI to support alarm work-
flows in ICS. We discuss how AI could use existing data and
systems for alarms (RQ1, Sec. 6.1), how AI could support
humans in alarm workflow tasks (RQ2, Sec. 6.2), and how to
navigate barriers that hinder AI adoption (RQ3, Sec. 6.3).

6.1 Deploying AI in systems for alarms

What data and systems are used for alarms in ICS, and
are they suitable for AI? (RQ1) We found that the systems
and practices for alarms vary across ICS (Sec. 4.1). Alarms
operate on process data, network data, or data from cyberse-
curity tools; alarm logic is programmed into sensors, PLCs,
SCADA, or DCS; and alarms can be forwarded to and dis-
played on various devices. Systems for alarms also vary in
the degree of vendor involvement. These differences suggest
that, although most prior work that proposes AI-based ICS
anomaly detection assumes that all process-level data and
compute are available for inference [23, 33], deploying a cen-
tralized AI model with real-time access to all process features
is unlikely to be feasible for most ICS.

We found that organizations that work with ICS often cen-
tralize and store historical data, which may make it suitable
for AI. With historical data, participants reported performing
data analysis tasks, labeling data, and using automated tools
that suggest a readiness for adopting AI (Sec. 4.2).

Recommendation: Consider the varying availabilities of
data and infrastructure in ICS when deploying AI. Ef-
fectively using AI-based tools to support alarm workflows
in ICS requires considering how an AI-based tool would be
deployed: what data will be used for training and inference,
where inference will be performed, and whether tools will
be managed by plant owners or vendors. Designers of AI-
based tools need to consider that it is likely that they would be
training AI models on only a subset of process-level features.

In domains other than ICS, some deployment models of
AI may already fit with the existing systems and practices of
some ICS, such as decentralized algorithms for model training
and inference (e.g., federated learning across IoT devices [45])
or accessing AI-based tools through a vendor (e.g., AI as a
service [50]). Future work should investigate and develop de-
ployment models for AI that match the varying requirements
of ICS environments.

Recommendation: Acknowledge the impact of govern-
ment regulation on AI adoption. We found that differ-
ences in government regulation impact alarm workflow prac-
tices (Sec. 4.4). For example, in the electric industry, NERC
CIP regulations impose security and documentation require-
ments on connected devices and collected data, which causes
some plant owners to choose not to connect certain devices
to networks. Developers of AI-based tools for the electric
industry will similarly need to comply with NERC CIP regu-
lations. Thus, adopting AI for ICS in industries with stricter
regulations (e.g., electricity) will be more difficult than in oth-
ers (e.g., oil and gas). Researchers and designers of AI-based
tools may find new opportunities by focusing on deployment
in industries with more flexibility for AI adoption.

6.2 Using AI to support alarm workflow tasks
What human tasks are performed for alarms in ICS, and
can AI support them? (RQ2) We found that several tasks
are performed for alarms in ICS (Sec. 4.2), as shown in Ta-
ble 2. In particular, beyond real-time anomaly detection, hu-
mans analyze alarms post-hoc for alarm diagnosis and alarm
management. Most prior work in AI for ICS security focuses
on AI-based anomaly detection [23, 26], but participants re-
ported challenges with alarm diagnosis and alarm manage-
ment, which rely heavily on intuition and expertise (Sec. 4.3).
Participants themselves also suggested that AI could support
these tasks (Sec. 5.2). We therefore propose designing an AI-
based tool to support alarm diagnosis or alarm management.
Given an alarm (or set of alarms), an AI-based tool could help
humans triage alarms, suggest potential remediation actions,
or predict root causes; or given a larger (e.g., from the past
month) dataset of alarm and response data, an AI-based tool
could suggest alarms to be added, removed, or modified.

Recommendation: Design AI-based tools to assist humans,
rather than act autonomously. As described in Sec. 5.3,
we found that participants prefer that AI-based tools make
suggestions rather than automate decisions. Furthermore, as
described in Sec. 4.3, alarm diagnosis and alarm management
are often performed post-hoc and are used to address rare
and complex situations; a human-facing, AI-based assistant
may be appropriate for these tasks where urgent action is not
required. Researchers and designers of AI-based tools should
therefore focus on interactively assisting humans. Prior work
has explored methods to provide assistance through human-
AI interaction [43, 68], and a promising area of future work
would be to apply such methods to ICS alarm workflow tasks.

Recommendation: Design AI-based tools to produce unin-
trusive, actionable outputs. We found that nuisance alarms
and operator fatigue often hinder alarm response, and diagnos-
ing unclear and unactionable alarms is a common challenge
(Sec. 4.3). We recommend that AI-based tool designers ensure



Stage of Alarm Workflow Available Input Data Prediction Task(s) Anticipated End-user

Anomaly detection Real-time process data Detect anomalies in real time Operator

Alarm diagnosis Alarm with context
Suggest real-time alarm response Operator

Predict root cause of alarm Lead operator

Alarm management Set of prior alarms and actions
Fix a misconfigured alarm Engineer

Improve alarm ruleset Manager

Table 2: We suggest opportunities for AI-based tools to support different alarm workflow tasks. For different stages of an alarm
workflow (shown in Fig. 3), we list the expected input data available for AI, potential prediction tasks for AI, and anticipated
end-users who would use these predictions.

that AI outputs are actionable (e.g., by using AI-based expla-
nations to suggest actions with each prediction [1, 24, 46]),
and we recommend that AI-based tools balance the desire
to inform the user with giving the user the ability to avoid
repeated notifications if they are judged to be incorrect (e.g.,
by allowing humans to make decisions without AI involve-
ment [8, 13]).

6.3 Navigating barriers to AI adoption
What ICS-specific factors hinder AI adoption? (RQ3)
We found that barriers from technology (e.g., limited device
connectivity), personnel (e.g., insufficient training), and cul-
ture (e.g., tensions between IT and OT professionals) can
limit alarm workflow design and execution in ICS (Sec. 4.4).
Participants also reported reservations about adopting AI in
ICS (Sec. 5.3), stemming from a general mistrust of new tech-
nology in ICS (Sec. 4.5). Vendors are said to fail at meeting
the requirements of ICS by imposing high costs, not providing
adequate customization, or not matching the culture of safety
in ICS. To avoid making similar mistakes when deploying
AI-based tools to protect ICS, we recommend ways for tool
designers to navigate these barriers.

Recommendation: Design AI-based tools for the skill sets
of practitioners who work with ICS. We found that alarm
workflows involve multiple people with different tasks and
specialties (Sec. 4.2). For example, alarm diagnosis could be
performed by an operator who first sees the alarm, a manager
determining the root cause of an alarm that was incorrectly
responded to, or an engineer debugging the logic of a miscon-
figured alarm. AI-based tools should be designed for specific
users performing these tasks, rather than generally for practi-
tioners. Table 2 lists potential opportunities for AI to support
different alarm workflow tasks.

Participants also reported that requirements on personnel
would be a barrier to adopting AI-based tools (Sec. 5.3), and
plant owners are unlikely to hire or train skilled end-users to
use AI-based tools. Instead, AI-based tools should be tailored
to the existing skill sets of practitioners working with ICS.
Prior work in other domains has investigated how explana-

tions of AI outputs can be modified based on levels of user
expertise [14, 20], and a promising area of future work would
be to apply such approaches to support practitioners in ICS.

Recommendation: To build trust in AI, focus on demon-
strating transparency to users. We found that trust and
reputation were more important than quantitative metrics
when deciding to adopt new technology in ICS (Sec. 4.5).
Practitioners who work with ICS often do not currently trust
AI (Sec. 5.3), so AI-based tool designers must first build
this trust. Participants suggested building trust by transpar-
ently demonstrating how AI-based tools make decisions. Fur-
thermore, participants reported that OT professionals face
challenges working with IT professionals, are weary of new
technology being pushed into their environments, and can be
excluded from tool-adoption decisions (Sec. 4.4). Thus, AI-
based tool demonstrations should include practitioners who
work with ICS and OT.

As a first step to build trust in AI, we recommend pilot
projects that allow interactive testing of AI-based tools and
focus on transparency of AI models. Prior work has developed
interactive tools for prototyping AI-based tools by allowing
users to modify data and observe changes in predictions [64,
65], and future work should investigate whether such methods
are effective for practitioners who work with ICS.

7 Conclusion

We investigated current practices for alarms in ICS and iden-
tified challenges and opportunities for AI to support these
practices. After conducting semi-structured interviews with
18 practitioners who work on safeguarding and securing ICS
in different roles, from performing alarm response to building
tools for alarms, we identified opportunities to adopt AI-based
tools to support alarm diagnosis and alarm management. Fi-
nally, we recommend ways for researchers and designers of
AI-based tools to navigate barriers to adoption in ICS, such
as considering AI models with access to only a subset of
process-level features and interactively demonstrating model
transparency to practitioners.
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A Semi-structured interview script

The detailed questions used in our semi-structured interview
script are provided below. When appropriate, we asked follow

up questions to participants to encourage further elaboration.

Part I - Background information
Participant demographics:

• What type(s) of ICS do you work on?

• What is your job title?

• How many years of experience do you have with
ICS/OT?

• Do you have a background in cybersecurity? De-
scribe/how many years?

• Do you have a background in machine learning? De-
scribe/how many years?

Specifics of ICS:

• What parts of the system are monitored and controlled
by PLCs, SCADAs, etc?

• What types of data is collected, how is it collected, and
how is it shown to a human?

• Could you describe your day-to-day responsibilities?

Part II - Questions about monitoring and alarms at your
organization
Addressing issues in ICS:

• What are examples of anomalies or problems in the pro-
cess that would raise alarms in your ICS?

• How are these issues detected?

• When an alarm is raised, what is your role in addressing
the situation?

• How do you find out about these situations? (Are you
watching an HMI? Do you get assigned work orders?)

• Who around you is involved in addressing these situa-
tions? (Are you managing people who address it? Are
other people analyzing the situation and asking you to
investigate?)

Anomaly detection tools:

• What tools or systems does your organization use to
detect anomalies?

• Does your system primarily rely on rules, ML, or both?

• Does your operate on network information (e.g., pack-
ets), operations information (e.g., sensors and actuators),
or both?

Responsibility around anomaly detection:

https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/


• Who sets up anomaly detectors, rules, or set points? You,
other people in your org, outside vendors?

• What types of data sources are used in the monitoring
system?

• Who is responsible for these sources? How many people
in the org are in that role?

• What types of actions are commonly taken or expected,
based on information from the monitoring system?

• Who is responsible for taking these actions? How many
people in the org are in that role?

Responding to anomalies:

• How many alarms do you receive, and what proportion
of them do you have to manually investigate?

• Do alarms need to be triaged? Is this process difficult?

• What starts an investigation of an alarm?

• How do you determine if the alarm in question is a
false positive? Walk through your process in making this
decision.

• Are any tools used to help with diagnosis, what informa-
tion is provided by this tool?

• How is information from this tool used to determine if
an alarm is a false positive?

• How is information from this tool be used to determine
next steps for remediation?

• What other information would you need about an alarm
to help determine if it is a false positive or not?

• Could parts of this decision be automated? Would you
trust it?

General perspectives:

• What are the most helpful or useful aspects of the tools
you use?

• What are the main challenges in detecting and debugging
anomalous behavior?

• What are the main challenges in working with ICS in
general?

Part III - Tool adoption

• How did your organization decide on the tools it uses for
monitoring?

• Are there other roles in the organization who measure
these things, experiment with tools, or deploy them?

• What properties or metrics were used to distinguish the
tools you use from other alternatives?

• Are these decisions based on quantitative metrics? If no,
then what is it based on?

• Once a tool is deployed, do you use any metrics or pro-
cesses to ensure that it is useful for your organization?

• Suppose a vendor suggests that you try a new tool, what
properties would it need to have for you to consider
adopting it?

Part IV - Perceptions of AI

• What do you consider to be the pros and cons of using AI-
based anomaly detection methods vs traditional methods
for alarms in ICS?

• What improvements would need to be made to AI to
make it more trusted by your organization?

Part V - Miscellaneous

• Is there anything else you wanted to tell us that we didn’t
ask about?

B Codebook

We provide our codebook in Table 3 and Table 4. The codes
shown in Table 3 are used to analyze the responses in part II
of our interview script, and the codes shown in Table 4 are
used to analyze the responses in part III and part IV of our
interview script; additional codes are included in Table 4 for
general themes that emerged, which were not specific to an
interview question.



Name of Code Description # Matched

role > OTcybersecurity Performs OT cybersecurity tasks in their role 5
role > alarmResponse Performs alarm response tasks in their role 4
role > engineering Performs engineering tasks in their role 11
role > manager Performs management tasks in their role 6
role > operations Performs operations tasks in their role 4
teamsize Details about team size 6

architecture > usesPLC Organization uses PLCs 12
architecture > usesDCS Organization uses a DCS 5
architecture > usesSCADA Organization uses SCADA 5
architecture > usesHMI Organization uses HMIs 7
architecture > usesMainControlRoom Organization uses a control room 6
architecture > usesSubControlRoom Organization uses multiple control rooms 2
architecture > usesHistorian Organization uses a data historian 7
architecture > detailsPLC Details about how PLCs are used 10
architecture > detailsSCADA Details about how SCADA/DCS are used 14
alarmArch > PLCs Alarms come from PLCs 13
alarmArch > SCADA Alarms come from SCADA/DCS 6
alarmArch > safetySystem Alarms come from a safety system 11
alarmArch > external Alarms come from an external tool 2
alarmDefn > bounds Alarms defined as upper/lower bounds 12
alarmDefn > custom Alarms defined as custom logic 10
alarmRole > operations Operators configure alarms 3
alarmRole > team A team configures alarms 3
alarmRole > vendor A vendor configures alarms 4
alarmTypes > process Alarms for unwanted process values 16
alarmTypes > communication Alarms for communication issues 6
alarmTypes > componentFailure Alarms for component failures 6
alarmTypes > cybersecurity Alarms for cybersecurity issues 3
alarmTypes > physicalSecurity Alarms for physical security issues 3
alarmTypes > other Alarms for other types of issues 5

alarmResponse > triage Details about triage process in alarm response 13
alarmResponse > controlRoom Details about control rooms in alarm response 4
alarmResponse > severity Details about severity levels in alarm response 9
alarmResponse > operations Details about coordination with operators in alarm response 11
alarmResponse > humanFactors Details about human factors in alarm response 6
alarmResponse > UI Details about user interfaces in alarm response 5

alarmNumber Details about number/rate of alarms 9
alarmPhilosophy Details about what should be an alarm 9
alarmActionability Details about actionability of alarms 4
alarmDiagnosis > challenges Details about challenges when diagnosing alarms 12
alarmDiagnosis > nuisance Details about nuisance alarms when diagnosing alarms 12
alarmDiagnosis > intuition Details about need for intuition when diagnosing alarms 11
alarmDiagnosis > postHoc Details about post hoc analysis of alarms 10
alarmDiagnosis > tools Details about vendor tools when diagnosing alarms 8
alarmDiagnosis > ML Details about using ML to diagnose alarms 3
alarmManage > meeting Details about alarm management meeting 4
alarmManage > testing Details about testing alarms 5
alarmManage > update Details about updating alarms 5

Table 3: Codes for responses in Part II of our interview script, which focuses on tasks and systems in alarm workflows. For each
code, we provide: its name and structure, its description, and the number of participants matched to it.



Name of Code Description # Matched

tools > barriersCultural Barriers to tool adoption from ICS culture 10
tools > barriersTechnical Barriers to tool adoption from ICS technical limitations 6
tools > peopleExcluded Details about people excluded in adoption 4
tools > peopleIncluded Details about people included in adoption 5
tools > values Details about important values for adoption 16
tools > metrics Details about how metrics are used to evaluate tools 13

AI > positive General positive perceptions of AI 15
AI > positive > saveTime AI will save time 9
AI > positive > complex AI performs complex tasks better than humans 9
AI > positive > exciting AI is novel and exciting 3
AI > negative General negative perceptions of adopting AI 17
AI > negative > trust ICS would not trust AI 11
AI > negative > criticality ICS are too critical for AI 10
AI > negative > complex Parts of ICS are too complex for AI 5
AI > negative > transparency AI decisions are not transparent 16
AI > negative > dataCost AI requires data that we do not have 8
AI > negative > moneyCost AI requires money that we do not have 4
AI > negative > peopleCost AI requires people than we do not have 6
AI > negative > badAI Negative perceptions of AI itself 5
AI > conceptual Conceptual models of AI 18
AI > conceptual > LLM Talked about LLMs 8
AI > conceptual > neuralNet Talked about neural networks 5
AI > conceptual > linear Talked about linear regression or classification 3
AI > conceptual > prediction Talked about data for AI predictions generally 6
AI > conceptual > training Talked about data for AI training generally 12
AI > useCase > assistant Suggest to use AI as an assistant 7
AI > useCase > optimizeProcess Suggest to use AI to optimize process 8
AI > useCase > optimizeAlarms Suggest to use AI to optimize alarm workflows 8
AI > useCase > maintenance Suggest to use AI for system maintenance 3
AI > recommendations Recommendations for how AI should improve 8

external > alarms An external party performs part of alarm workflow actions 1
external > implementation An external party implements part of the alarm workflow 4
external > detailsExternal Details about contracts with external parties 9
compareIndustry > cultural Comparing ICS industries based on cultural differences 5
compareIndustry > longitudinal Comparing ICS based on trends over time 6
compareIndustry > size Comparing ICS based on their size 5
compareIndustry > technical Comparing ICS industries based on technical differences 4
misc > cybersecurityPerceptions Current cybersecurity perceptions in ICS 9
misc > cybersecurityPractices Current cybersecurity practices in ICS 9
misc > regulations Government regulations affecting ICS 7
misc > cultureClash IT/OT culture clash 8
misc > painPeople Personnel issues affecting ICS 8
misc > painTechnical Technical issues affecting ICS 9

Table 4: Codes for responses in Part III and Part IV of our interview scripts, which focus on vendor tool adoption (Part III) and
perceptions of AI (Part IV). We also include codes for other miscellaneous themes, such as cross-industry and cross-functional
pain points. For each code, we provide: its name and structure, its description, and the number of participants matched to it.
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