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Abstract— In the field of aviation, the Detect and Avoid
(DAA) problem deals with incorporating collision avoidance
capabilities into current autopilot navigation systems. As an
application of the Small Object Detection (SOD) problem, DAA
presents the difficulties of a low signal-to-noise ratio and far
range detection. Visual DAA is also susceptible to changing
weather and lighting conditions at deployment. While current
literature has presented many solutions for this, prior work
has yet to study the robustness of the learning-based models
for DAA. In this work, we show that standard techniques for
improving robustness for object detection do not produce the
desired results for DAA given the SOD constraints. We present
targeted transformations, a zero-shot technique that can signif-
icantly improve robustness with minimal impact on accuracy.
We demonstrate how to construct these transformations and
evaluate our method on the current SOTA model for DAA,
showing a 53.6% increase in recall. This makes our pipeline
more robust to changes in lighting and environmental factors,
and better able to detect potential threats. In the future, we
hope to automate the transformation selection process, making
it easier to adopt in different use cases.

I. INTRODUCTION

As autonomous cars and planes are quickly becoming a
reality, it is critical to be able to assess the robustness of their
perception systems. Risk detection systems are especially
important for autonomous planes, as they operate in a much
larger and less structured environment. In the case of camera-
based detection systems, seeing these potential risks from
far distances falls in the category of Small Object Detection
(SOD). Small Object Detection, as a sub-field of generic
object detection, concentrates on detecting objects of small
size and is of great significance in various scenarios such as
surveillance, drone scene analysis, pedestrian detection, traf-
fic sign detection in autonomous driving, etc.,where accurate
detection is still needed from as far as 100m away.

Within the field of aviation, the Detect and Avoid (DAA)
problem deals with incorporating collision avoidance capa-
bilities into current autopilot navigation systems. Detect and
Avoid is defined by the Federal Aviation Administration
as “the capability of an aircraft to remain well clear from
and avoid collisions with other airborne traffic.” [34] The
deployment constraints of Visual DAA, such as the low
signal-to-noise ratio and far range of the detection inputs,
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Fig. 1: We explore methods beyond benchmarking to analyze the
robustness of perception methods for Detect and Avoid: (a) We
examine how properties of input image data can have a downstream
effect on model performance. (b) Controlled experiments can lead
to the discovery of biases or shortcuts learned by a model. For
example, an experiment examining the average grayscale values
for different predictions made by a false positive filter (in our
case, a secondary classifier in the AirTrack [12] model) shows that
any dark object on a lighter background is determined as a true
positive (warmer heatmap indicates lighter grayscale values). (c)
Transformations in the image space can help align runtime data to
training distribution, leading to more robust performance.

make the detection phase of this collision avoidance problem
a clear application of SOD.

While current literature contains many methods for ap-
proaching this problem and solving it with high precision,
prior work has yet to study the robustness of these solutions
for both DAA and SOD in general. Most prior works focused
on robustness consider image detection and classification
tasks with a high signal-to-noise ratio [20], [7], and our DAA
use case involves two unique challenges that are unaddressed
in this prior work. First, the DAA task involves object
detection, in which the model predicts a bounding box rather
than a ground-truth class. This eliminates prior techniques
that require explicit classification labels to separate points in
latent space [15]. Second, the DAA task involves a very low
signal-to-noise ratio: on average, a ground-truth bounding
box makes up a very small percentage of the overall image
(∼ 1%). Since there is such a small relative amount of signal
in the input image, latent-space techniques [27], [15], [21],
[11] fail to capture the fine-grained details of an image when



separating images with and without ground-truth objects.
In this work, we instead explore techniques that can work

well in long-range, low-signal settings and can be applied
to the DAA task. We show that standard techniques for
improving robustness for object detection do not produce
the desired results for DAA given the SOD constraints. We
present targeted transformations, a zero-shot technique that
can significantly improve robustness with minimal impact on
accuracy. We demonstrate how to construct these transforma-
tions and evaluate our method on the current SOTA model
for DAA, showing significantly improved recall. Figure 1
provides an overview of our method: we first analyze image
properties to identify model biases in our DAA framework,
and then, we design and perform targeted transformations on
images to improve robustness at runtime.

The rest of this paper is structured as follows: Section II
presents the current literature on robustness for perception
systems. Section III explains the DAA problem in detail,
including the current state-of-the-art system and relevant
datasets. Section IV details our method of targeted image
transformation. Section V presents our experimental results
and ablations. Section VI gives conclusions and future work.

II. RELATED WORK

While the choice of a machine learning model’s archi-
tecture is important for performance, its robustness and
generalization capabilities largely depend on the data used
to train, validate, and test it. Training datasets should model
the deployment conditions as accurately as possible, but
cannot exhaustively cover every scenario. To overcome this,
robustness techniques focus on bridging this gap between
training and real-world environments.

The noise (i.e., difference) between training and testing
distributions can be classified as corruption or adversar-
ial [45]. Corruption noise models inputs that randomly differ
from the training distribution at the distribution level; one
example is when the environment and weather conditions at
deployment are different than those modeled by the training
data and is also referred to as distribution shift. In contrast,
adversarial inputs are individual inputs that do not match the
training distribution; they can be rare cases belonging to the
long-tailed portion of the distribution or hand-crafted inputs
designed to mislead the model [28].

In this work, we focus on corruption noise, which can
be addressed by domain adaptation techniques. These tech-
niques help models generalize to new domains unseen in
the training data without incurring the overhead cost of
additional training. The most popular domain adaptation
methods rely on fine-tuning with limited to no labeled data in
the target domain. Semi-Supervised Domain Adaptation [5],
[6], [35], [42] and Few-Shot Supervised Adaptation [25],
[36], [43], [44] have been studied for image classification and
segmentation and can be done with limited labeled data [43].
However, the number of labeled samples needed scales with
the domain gap, making these methods infeasible for larger
domain gaps [8]. Unsupervised Domain Adaptation meth-
ods [41] either rely on self-training with pseudo-labels [16],

[19], [39], [46], [18] or adversarial training [13], [37], [38].
Other domain adaptation methods have been proposed in
a variety of contexts [27], [15], [21], [11], and often rely
on latent-space projections to explore new, unseen domains.
Finally, another popular domain adaptation approach uses
data augmentation with input transformations. These can be
applied in a zero-shot manner [22] or can be coupled with a
fine-tuning approach [29].

In this work, we focus on corruption noise caused by envi-
ronmental changes such as weather and lighting conditions,
and propose a zero-shot image transformation technique for
dataset augmentation.

III. DETECT AND AVOID

A. Background

Detect and Avoid (DAA) is a crucial capability that air-
craft require to avoid collisions with other airborne objects.
In a push for DAA standardization, ASTM [1] published
F3442/F3442M-20, a set of performance requirements which
define safe DAA operations for UAS with a maximum di-
mension less than or equal to 25ft and operating at airspeeds
below 100kts, without defining a specific DAA architecture.
According to this standard, for safe DAA operations, the
probability of track must be greater than 95% and the range
estimation error of the intruder must be within 15%, along
with an upper bound on the angular rate error.

Cameras and computer vision have become more popular
for building DAA systems, given their passive nature and
small form factor [24]. In this context, several techniques
have been explored for visual DAA following a common
pipeline: (a) estimation & subtraction of ego-motion, (b)
dynamic object detection, (c) temporal filtering & tracking.

Traditional approaches to visual DAA have looked at em-
ploying classical computer vision techniques in the following
ways: (a) optical flow-based methods [23] or image regis-
tration [30], [33] for ego-motion estimation & subtraction,
(b) morphological operations to separate the background &
foreground enabling object identification [4], [9], [17], [31],
and (c) track-before-detect [10] and filtering methods (such
as Kalman [26] and Viterbi-based) for temporal tracking and
filtering of detections [4], [17].

More recently, given the advent of deep learning, neural-
network-based methods have shown impressive performance
for airborne object detection and tracking. One such method,
Dogfight [3], leverages a two-stage spatio-temporal segmen-
tation approach to detect drones from videos. Further build-
ing on this, TransVisDrone [32] proposes spatio-temporal
transformers for aerial drone detection. Besides drone de-
tection, approaches such as AirTrack [12] use convolutional
neural networks (CNNs) for detecting various types of air-
borne objects.

B. Datasets

The largest publicly available dataset for Airborne Object
Tracking (AOT) was introduced in 2021 by Amazon [2]. It
consists of approximately 5000 sets of flight sequences, each
lasting 120 seconds and captured at a rate of 10Hz, resulting



in a cumulative flight data duration of about 164 hours. This
dataset has over 3.3 million annotated image frames featuring
airborne objects. These images are characterized by a resolu-
tion of 2448×2048 and are rendered in 8-bit grayscale. The
size of the labeled objects varies, ranging from occupying 4
to 1000 square pixels. This dataset additionally encompasses
different atmospheric and visibility conditions. Specifically,
around 69% of the sequences enjoy optimal visibility, 26%
exhibit medium visibility, and 5% depict poor visibility.

AirTrack [12] further introduces a real-world dataset,
named TartanX6C, where a multi-camera payload is used
to capture data on board a Cessna 172 performing general
flight & an unmanned aerial vehicle (UAV) flying towards
a helicopter in a controlled setting. The dataset consists
of 18 sequences where the ego aerial vehicle (ownship) is
either a helicopter, UAV, or a general aviation plane (i.e.,
Cessna). Similar to the AOT dataset, the images are of size
2448× 2048 and are rendered as 8-bit grayscale images.

In this work, we use the AOT [2] dataset as training data
and the TartanX6C [12] dataset as our test set.

C. AirTrack

In our study, we use the state-of-the-art, AirTrack [12], as
our model for analysis. The AirTrack system’s overall design
consists of four sequential modules: Frame Alignment, De-
tection and Tracking, Secondary Classification, and Intruder
State Update. The inputs for the system are two consecutive
grayscale image frames, and the system outputs a list of
tracked objects with various attributes. The description of
the AirTrack modules is as follows:

Frame Alignment: This module aligns successive frames
to distinguish between foreground objects and camera ego-
motion. It predicts optical flow between frames and con-
fidence in the predicted flow. It operates on input frames,
cropping them to focus on high-texture regions. A ResNet-
34 architecture with two prediction heads is used. Training
involves creating augmented input tuples and minimizing a
loss between predicted and Lucas-Kanade optical flows.

Detection: The detection module consists of two cascaded
parts. The primary module takes two full-resolution frames,
while the secondary module processes cropped regions
around top detector outputs from the primary. The cascaded
network outputs maps for the center heatmap, bounding box
size, offsets, track offsets, and log-scale object distance.
HRNet-W32 is used as the primary detector, while HRNet-
W48 is used as the crop detector. Given the marginal benefits
of the crop detector, we only consider the primary detector
for our study.

Tracking: The tracking approach builds on offset tracking
vectors. It associates current detections with existing tracks
based on predicted track offsets. If adjusted centers match
within a threshold, the detection is associated with a track;
otherwise, a new track is created.

Secondary Classifier: A ResNet-18 module serves as a
binary classifier for false-positive rejection. It takes cropped
regions around detector bounding boxes as input and aims to
improve precision by rejecting false positives. This module

is trained using a focal loss, and training data is mined using
the primary detector and random image cropping.

Overall, the AirTrack system’s sequential modules work
together to align frames, detect and track objects, and reject
false positives. We use the AirTrack variant trained on the
entire AOT dataset. Furthermore, we use the TartanX6C
dataset as our analysis benchmark.

IV. TARGETED TRANSFORMATIONS

In this section, we show that standard techniques for
improving object detection robustness do not produce the
desired results in the small object detection problem. We
then present targeted transformations, a zero-shot technique
that can significantly improve robustness with minimal im-
pact on accuracy, and demonstrate how to construct these
transformations in the DAA setting on the AirTrack model.

A. Performance Analysis

At first glance, the AirTrack pipeline works very well,
producing a high accuracy and satisfying the ASTM F3442
standard [1] for some classes of aircraft (i.e., over 95%
chance of successfully tracking an aircraft up to 700m range
and a range estimation error less than 15% for an aircraft
up to 1.5km away). We show the range estimation error and
tracking probability of AirTrack in Figures 2 and 3.

However, when certain properties of the input image
are varied, the performance of the DAA model may drop
considerably, indicating a spurious correlation between these
image properties and the model output. We define a set
of measurements for each input image; these measurements
capture properties of the image that can reasonably change
based off of different environmental and lighting conditions
in deployment conditions. Table I lists all the image prop-
erties considered as well as how they were measured and
what physical change they are modeling. Here, “global” and
“local” refer to the pixel area of the image; Global properties
were measured across the entire image frame, and local
properties were measured within the bounding box of the
object being detected and tracked.

Measurements like an image’s brightness or contrast are
measured at different scales. For each frame, we measure

Fig. 2: Range estimation error of AirTrack pipeline, from [12]. The
red line denotes the maximum average error that the system can
have under the ASTM guidelines. AirTrack satisfies this standard
up to a distance of 1.5km.



TABLE I: Image properties considered for transformations. For each property, we list the method and frame region used to compute it,
as well as the physical phenomena that makes it relevant to our application.

Property Global Local Computation Modelled Phenomena

Brightness X X Grayscale intensity mean Sensor exposure change
Contrast X X Grayscale intensity variance Haze, overfitting to keypoints
White noise X Peak Signal-to-Noise Ratio Sensor noise
Box size X Area of box Planar pose and viewpoint changes
Box position X Relative X, Y of box center Relative viewpoint

Fig. 3: Probability of track error across different ranges, from
[12]. The red line denotes the minimum track probability that the
system can have under the ASTM guidelines. AirTrack satisfies this
standard up to a distance of 700m.

image properties in the areas local to the ground-truth object,
based on the center of the ground-truth labelled bounding
box. For example, we measure the local brightness of an
object by computing the average pixel intensity in a 32x32
box centered on the ground-truth bounding box. Table I
lists each image property, its measurement scope, how it is
computed over each frame in our dataset, and what physical
phenomena is being modelled by it.

Given a full set of measurements for each frame, we
next correlate the performance of AirTrack across these
properties, without using any transformations or robustness
techniques. Three of these measurements provide insight into
existing biases in the DAA model—we find that AirTrack
performs worse when: (i) the brightness is lower, (ii) the
bounding box is small, and (iii) the bounding box position is
lower on the y-axis. (ii) and (iii) are both natural byproducts
of the problem setting: (ii) is intuitive as smaller objects
will naturally be harder to detect, and (iii) is because the
sky provides a cleaner background for detection than the
ground along with all objects below the horizon line. The
image brightness, however, is an artifact of the dataset, as
it was recorded on sunny, good weather days. This will not
always be the case at deployment time, so the model should
be robust to these variations in lighting.

Figure 4 shows the box plots of these measurements for
each frame, with each observation categorized as a true
positive or false negative based on model performance.
There is a clear difference between the distributions of the
false negative (FN) and true positive (TP) detections for
these measurements, indicating a correlation between the

Fig. 4: Box-and-whisker plot plotting the correlation between
AOT [2] image properties and AirTrack [12] model performance.
There is a clear difference between the distributions of the false
negative (FN) and true positive (TP) detections. For brightness
and y-axis position, the distribution range is around half for true
positives as for false negatives. This indicates that these properties
are potential features that impact the model’s detection output.

image properties and whether the model detected the object.
The range of brightness measurements for the true positive
detections is much smaller than that of the false negatives.
From the y-axis position measurements, we see that nearly
all objects in the lower half of the frame were not detected,
and thus a false negative. For box size, the distribution of
false negatives is heavily skewed towards smaller objects.
These results show that, although the overall performance
of AirTrack is strong, there still exists conditions where the
system is more likely to fail.

B. Image Transformations for Adaptation

In the previous section, we found that local image prop-
erties such as brightness and bounding box size affected the
performance of AirTrack. Given that position and bounding
box size were specific to the object, not the frame, and



Fig. 5: Example best transformation after image property analysis.
The left image is a sample frame taken from the TartanX6C [12]
dataset without any transformation. The right image is the same
frame after transformation. The frame brightness has been increased
with a 1.5 gamma correction and the brightness of the area around
the candidate objects have been decreased with a 0.5 gamma
correction.

therefore required knowledge of ground truth, we focused
on brightness for our experiments. To improve robustness in
the cases where AirTrack performs worst, we propose to use
a gamma correction [14], which can adjust the brightness of
an image while minimizing the information loss. To adjust
the brightness of the frames, we applied a gamma correction
instead of additively changing the brightness, so as not to
lose information in the transformation process. The gamma
property of an image defines “the relationship between a
pixel’s numerical value and its actual luminance” [14] and
is typically utilized in image compression, as it is able to
store pixel intensities more efficiently. From Figure 4, we
can see that the frames of the true positive predictions are
much brighter than those of the false positive predictions, so
we transform the entire frame to increase the brightness.

As presented in Section II, state-of-the-art image aug-
mentations for improving robustness apply transformations
uniformly across a frame. While this works well for generic
object detection tasks, it does not provide any benefit for
Small Object Detection, which we provide empirical com-
parisons for in the next section. In fact, depending on the
environmental conditions, the transformation can decrease
detection performance. To mitigate this, we propose Targeted
transformations, which consists of applying different trans-
formations in the global frame and in the local area around
the object that needs more attention. In our application, we
use a gamma correction to increase the brightness of the
entire frame and apply a separate gamma correction within
the local area around the object to decrease the brightness in
this region, using the contrast to increase model attention in
that area. Figure 5 shows an example of this transformation.
Detailed ablation studies of transformation composition and
selection of candidate bounding boxes for the objects are
presented in the next section.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

For our experiments, we used the AirTrack pipeline,
trained on the Airborne Object Tracking [2] dataset as
presented in [12], as our base model for all the robustness
transformations and ablations presented in the following

TABLE II: Comparison between standard robustness techniques

Robustness Technique Precision Recall

Baseline 0.970 0.330
Finetuning 0.429 0.238
Traditional Augmentation 0.983 0.307
Targeted Transformation 0.989 0.507

experiments. We applied our data augmentations to the
TartanX6C [12] data, our chosen test dataset, made up of
real world data collected from a camera on a small airplane,
to fall within the brightness range of the training data. The
transformation increased the brightness of the entire frame
using a gamma correction of 1.5 and decreased the brightness
within the local object region using a 0.5 gamma correction.
An example transformation can be seen in Figure 5.

B. Traditional Robustness Techniques

We compare against two methods from the current lit-
erature: fine-tuning and zero-shot transformations. Current
zero-shot techniques for improving robustness consist of
applying a transformation uniformly to the entire frame [22].
For this comparison, we applied a gamma correction of 1.5
based of our earlier analysis on the image properties of our
dataset. For fine-tuning, we started with AirTrack that had
been trained on the Airborne Object Tracking [2] dataset and
trained it for an additional 500 epochs on the same dataset
with the targeted transformation applied.

The results of this comparison are given in Table II.
From this, we can see that traditional zero-shot augmentation
did not have a significant effect on either the precision or
the recall. Fine-tuning, on the other hand, decreased model
performance for both metrics. A possible explanation for this
is that fine-tuning could have shifted the brightness range
that the model was able to successfully detect in, instead of
expanding that range. Our method increased the model recall
by 53.6%, while keeping the precision high.

C. Targeted Transformations

In this section, we show that the best transformation, based
on our analysis of the model dependence on image proper-
ties, is a brightness adjustment using a gamma correction
of 1.5 on the whole frame and gamma correction of 0.5 in
the local object region. This is consistent with the image
property measurements we presented in Section IV and is
explored in more detail with an ablation study later in this
section. The results of this experiment are shown in Figure 6,
broken down by each video sequence in the dataset.

The first key aspect of using this technique is to find a
useful transformation, as discussed in depth in the previous
section. In addition, we perform an ablation study on the
construction of this transformation. We test different combi-
nations of gamma parameters, in both the global and local
areas, and an orientation transformation, that is mirroring the
region about the vertical axis. The results of this ablation
study are given in Table III.

These ablations results are consistent with the image
property analysis from Section IV. We see that the biggest



Fig. 6: Model recall results for each video sequence in the Tar-
tanX6C dataset with the best transformation: gamma correction of
0.5 in the local object region and 1.5 in the rest of the frame. The
recall increases up to 7x depending on the lighting conditions of
the particular video.

TABLE III: Ablation results for transformation composition. The
baseline performance is given at the top for comparison. The local
and global gamma corrections each contribute to a significant in-
crease in recall, giving the best performance when applied together.
Flipping the region about the vertical axis gives no improvement
in performance, as consistent with earlier analysis.

Transformation Composition
Global Gamma Local Gamma Vertical Flip Precision Recall

1.0 1.0 No 0.970 0.330

0.5 1.0 No 0.887 0.212
0.5 1.5 No 0.857 0.162
1.0 0.5 No 0.977 0.436
1.0 1.5 No 0.963 0.264
1.5 0.5 No 0.989 0.507
1.5 1.0 No 0.987 0.404

0.5 1.0 Local 0.888 0.213
0.5 1.5 Local 0.858 0.162
1.0 0.5 Local 0.977 0.436
1.0 1.5 Local 0.963 0.264
1.5 0.5 Local 0.990 0.507
1.5 1.0 Local 0.988 0.404

0.5 1.0 Global 0.342 0.170
0.5 1.5 Global 0.276 0.126
1.0 0.5 Global 0.545 0.372
1.0 1.5 Global 0.367 0.181
1.5 0.5 Global 0.609 0.446
1.5 1.0 Global 0.543 0.336

improvement is caused by a global gamma correction of 1.5.
The next most significant increase in recall is caused by a
local gamma correction of 0.5, with these two transforma-
tions combined giving the best performance. We also test
flipping the transformation region about the vertical axis,
which has no effect on performance. This was expected as
object orientation had no correlation with performance in our
earlier image property analysis.

In addition to constructing the transformations for the
global frame and local object region, a critical aspect of this
method that will change based on use case is determining the
local object region. With this zero shot approach, we see the
greatest improvement in performance when the transformed
local area regions contain all the objects to be detected.

TABLE IV: Ablation results for local object region selection. The
model performance improvement scales with the percentage of
objects covered in the transformation regions, with the best per-
formance when all the ground truth (GT) regions are transformed.
This method is also robust to incorrect candidate bounding boxes,
as the addition of incorrect regions does not affect performance.

Bounding Box Selection Precision Recall

Baseline 0.970 0.330
GT bbox 0.989 0.507
Learned bbox 0.971 0.329
50% GT + 50% Learned bbox 0.988 0.412
50% GT + Learned bbox 0.987 0.404
GT + 50% Learned bbox 0.989 0.507
GT + Learned bbox 0.989 0.507

To test the sensitivity to the bounding box selection, we
performed an ablation study on this parameter. We trained
an instance of HRNet [40] in the same way as the full frame
detector from [12] to learn potential candidate bounding
boxes. Then, we tested different combinations bounding box
sets, varying the proportion of learned bounding boxes and
the proportion of ground truth bounding boxes. We see
that, as long as the correct regions are transformed, the
method can withstand the addition of many other potentially
incorrect regions to this set. Additionally, the performance
improvement scales with the percentage of objects covered
in the transformation regions. This shows that, when learning
these regions to give more attention, it is important to
minimize the false negative rate, but not the false positive
rate. The results of this ablation study are given in Table IV.

VI. CONCLUSION & FUTURE WORK

We showed that standard techniques employed for improv-
ing robustness in generic object detection do not produce the
desired results for small object detection, particularly within
the application of Detect and Avoid. We presented targeted
transformations, a zero-shot technique that can significantly
improve robustness with minimal impact on accuracy for de-
tection problems with low signal-to-noise ratio. We demon-
strated how to construct these transformations and evaluated
our method on the current SOTA model for DAA, showing
a 53.6% increase in recall. We also presented an ablation
study on the choice of local object regions to augment and
the choice of image transformations. In the future, we hope
to explore automating the transformation selection process
to generalize this method to other domains easily.
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