
Brokered Agreements in Multi-Party Machine
Learning

Clement Fung
University of British Columbia

Ivan Beschastnikh
University of British Columbia

ABSTRACT
Rapid machine learning (ML) adoption across a range of
industries has prompted numerous concerns. These range
from privacy (how is my data being used?) to fairness (is this
model’s result representative?) and provenance (who is using
my data and how can I restrict this usage?).
Now that ML is widely used, we believe it is time to re-

think security, privacy, and incentives in the ML pipeline by
re-considering control. We consider distributed multi-party
ML proposals and identify their shortcomings. We then pro-
pose brokered learning, which distinguishes the curator (who
determines the training set-up) from that of the broker co-
ordinator (who runs the training process). We consider the
implications of this setup and present evaluation results from
implementing and deploying TorMentor, an example of a bro-
kered learning system that implements the first distributed
ML training system with anonymity guarantees.

1 INTRODUCTION
Data has emerged as a premium resource in the modern age
of analytics. Entire industries are built on firstly collecting
and organizing data, and then computing and deploying
machine learning (ML) models for a variety of tasks.However,
in the modern cloud-based architecture, the ML pipeline lives
in a single administrative domain. Although this is efficient,
the benefits are one-sided. We propose that the modern ML
pipeline fundamentally does not need to be centrally located
or even centrally administered. In fact, decomposing the
control of the ML pipeline across more than one party leads
to a design that benefits all the parties.
As a review, at the most abstract level, the ML pipeline

includes the following stages:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343744

More centralized
Higher perf/less private

Less centralized
Lower perf/more private

Blockchain
solutions [20,33]

Federated
Learning [24]

Brokered
LearningParameter

Server [22]

Figure 1: Summary of prior work in distributed ML.

(1) Collect training data. A data provider collects training
data and houses it in an accessible location. Ideally, the data
is collected from a variety of sources to gain as much infor-
mation as possible to model the expected behavior of the
outside world.
(2) Inner training loop:
(2a) Calculate model updates. In the most general case,
a model update is computed on some or all of the col-
lected data. This calculation requires both a set of training
data and a view of the current model’s state. In this work,
we assume the calculation by stochastic gradient descent
(SGD) [8].
(2b) Aggregate and iterate. The model updates are col-
lected from all calculating sources and aggregated. In on-
line learning or highly parallelized settings, some staleness
of model state is acceptable in this process [30], allowing
looser consistency models. Once the model updates are
applied, the new state of the model is provided for the next
iteration, completing the inner loop in the pipeline.

(3) Deploy model in production. After a fixed number of
iterations, or once convergence heuristics are met, the train-
ing loop terminates. The final state of the model is deployed,
usually as a service, for use in prediction.
An emerging area in distributed ML is distributed multi-

party ML, which enables learning from data across a large
number of users. In contrast to the centralized data cen-
ter parameter server model [22], federated learning [24] en-
ables multi-party ML by maintaining training data on the
provider’s device and aggregating model updates at a trusted
central coordinator. Federated learning decentralizes the ML
pipeline (Figure 1) by having data providers perform the
above stages (1) and (2a), while a central coordinator runs
stages (2b) and (3). There have been claims of stronger pri-
vacy and security in federated learning [7], though recent
work has challenged these claims [4, 14, 17, 25].

69

https://doi.org/10.1145/3343737.3343744

APSys ’19, August 19–20, 2019, Hangzhou, China Clement Fung and Ivan Beschastnikh

In the quest to train an optimal model as quickly and effi-
ciently as possible, the central coordinator in federated learn-
ing is not incentivized to provide privacy to data providers [29],
yet it is most empowered to provide it. The advance of
privacy-preserving ML has, so far, been restricted by this
view. A single institution administers the entire ML process,
and an illusion of control is provided to the data providers.
On the opposite end of centralization, data marketplaces

are exchanges that use blockchains to decentralize the ML
process (Figure 1). These exchanges facilitate the purchase
and exchange of valuable training data (stage 1), and distrib-
ute the ML process (stages 2a and 2b) across a blockchain net-
work [20, 33]. These systems use smart contracts [35] to en-
sure the secure exchange of data and may include methods to
appraise training data in a differentially private manner [21].
Since the system lacks trust in any party to performML, these
systems perform training in trusted execution environments
(TEEs) [20] or use cryptographic techniques for ML [33],
both of which have high performance overheads [28]. Full
decentralization is an extreme proposal, and we believe that
intermediate design points on the centralization spectrum
(Figure 1) better balance privacy and performance.

A key observation in our work is that once data providers
and model curators agree on a learning objective for multi-
party ML, there is no need for the curator to also coordinate the
learning. There is a clear opportunity for a new model for
multi-party ML that simultaneously respects the emerging
privacy needs of data providers and model utility needs of
model curators, while logically centralizing the aggregation
stage (2b). We define this new learning setting, called bro-
kered learning, in which a neutral third-party coordinates
the learning process. We evaluated the plausibility of our
brokered learning model by designing one example bro-
kered learning system called TorMentor [13]. TorMentor is
an anonymous ML system that operates brokered learning
over the Tor network [9].

The brokered learning model we propose has well-aligned
incentives, which can broaden ML usage even further by
pushing parts of the ML pipeline outside of organizations
that today control and administer these pipelines. Another
advantage of our proposal is to better align modern ML
pipelines with new privacy regulations, such as GDPR. For
example, brokered learning relieves curators from storing
and even observing potentially private user data, both of
which are problematic under GDPR [32].

2 TOWARDS BROKERED LEARNING
We recognize that the distributed ML process is made possi-
ble by several actors, each providing their own unique value
to the system, and each with unique participation incentives.

Data providers contribute themost valuable resource: train-
ing data. To train a model that generalizes well to a variety
of situations, data should be collected from a variety of users.
The contribution of training data for ML is at tension with
the rising need for privacy [1, 2]. This has prompted the de-
velopment of privacy-preserving training methods [15, 34],
which allow providers to generate privacy-preserving model
updates in stage (2a), prior to the aggregation stage (2b).

An issue with applying these methods in the private multi-
party ML setting is that, in a tunable privacy setting, data
providers are not incentivized to provide data with lower
levels of privacy. As a response, large organizations have
implemented their own privacy technologies, which is prob-
lematic due to a lack of transparency and potential for im-
plementation errors [36].
On the flip side, when data providers have the freedom

to compute model updates locally, there is no process to
audit or mandate that the computation is correct. Recent
work has shown that this allows malicious data providers
to perform attacks on both the shared model and other data
providers [4, 14, 17, 25].
Model curators define the desired ML task, and may option-
ally provide the required algorithms for distributed multi-
party ML. In the model above, curators are responsible for
stage (3), and optionally may define (but not necessarily per-
form) stages (2a) and (2b). Curators are incentivized to train
the highest performing MLmodel, and are unconcerned with
privacy, which has hindered the deployment of fair and unbi-
ased ML systems [29]. In fact, there is a direct privacy-utility
trade-off when it comes to the value of data [10], so pro-
viding stronger ML privacy guarantees directly reduces the
amount of utility extracted from training data.

The issue of privacy has hindered the ability for untrusting
parties to share data and collaborate, forcing organizations
to collect massive amounts of training data for their own
isolated analysis, and limiting the range of new data domains
available to analysts.
Infrastructure providers house the update and aggrega-
tion computation (stages 2a and 2b). Functionally, the infras-
tructure provider does not need to know who is involved,
what computation is being executed, or what the model is be-
ing used for. They serve as a natural point for brokering and
equalizing the incentive interaction between data providers
and model curators since they cannot favor either party: in
leaking private data, they lose reputation with data providers,
and in compromising model utility, they lose model curator
business.

Today, a select few curators own massive infrastructures
for large scale ML, and the long tail of curators rent infras-
tructure from these providers. A variety of solutions have
proposed the infrastructure provider as a point for introduc-
ing privacy guarantees to data providers [7, 28]. But, these

70

Brokered Agreements in Multi-Party Machine Learning APSys ’19, August 19–20, 2019, Hangzhou, China

models are only available to the largest of infrastructure
providers and assume that the infrastructure provider and
the model curator are operated by the same entity. This cre-
ates a setting where private algorithms are proprietary and
opaque, and we have seen that implementation errors in
privacy-preserving techniques can result in weaker privacy
guarantees [36]. If there is no incentive for model curators to
provide privacy, why would they do it, and why would they
do it well [29]? Thus, we propose brokered learning, which
builds on the federated learning setting [24], but assumes no
trust or prior agreement between data providers and model
curators.

3 THREAT MODEL
We assume that the broker is administered by an honest-
but-curious neutral party, meaning that it does not initiate
actions and follows the prescribed deployment instructions.
For example, the broker detects and rejects anomalous be-
havior and terminates the learning process as instructed by
the model curator. A malicious broker could attempt to at-
tack providers or curators, but since this would result in a
massive breach of trust and loss of reputation, we do not
consider malicious brokers.
We assume that data providers and model curators do

not attack the broker itself, rather they aim to attack other
curators, other providers, or the outcome of the learning
process.
Poisoning attack. In a poisoning attack [6], an adversary
meticulously creates adversarial (poisoned) training exam-
ples and inserts them into the training data set of a target
model. This may be done to degrade the accuracy of the final
model (a random attack), or to increase/decrease the proba-
bility of a targeted example being predicted as a target class
(a targeted attack) [19]. For example, such an attack could be
mounted to avoid anomaly detectors [31] or to evade email
spam filters [27].

Since clients possess a disjoint set of the total training data
in federated learning; they have full control over this set, and
can perform poisoning attacks with minimal difficulty, if not
audited or verified by an external process.
Information leakage. In an information leakage attack,
such as model inversion, an adversary attempts to recover
the training examples used to train anMLmodel by querying
crafted examples for the model to predict [11, 12].

Information leakage attacks have been extended to feder-
ated learning: instead of querying information from a fully
trainedmodel, an adversary observes model updates or infers
them from changes in the shared model during the training
process [17, 25]. Once they collect a sufficient number of
model updates, an adversary can reconstruct training exam-
ples that belong to other clients.

Curator …

Data Providers

Broker
Deployment Verifier

Provider Verifier

ML Model
Aggregator

M

Model
updates

Settings

Final
model

Figure 2: Overview of brokered learning.

• Smart contract
deployment [20]

• External auth

• Total async SGD [30]
• Bulk sync SGD [22]
• Semi sync SGD [18]

• Proof of work [3]
• Shapley valuation [21]
• Reject on negative

influence [5]
• External auth

Possible implementationsBroker functionComponent

• Validates providers on join and
model update

• Rejects malicious provider
behavior

Provider
verifier

• Aggregates model updates
from providers

• Applies updates to shared
model, returns updated state

• Evaluates termination cond.

Aggregator

• Receives deployment requests
from model curators

• Accepts and enforces curator
requirements

• Establishes endpoint to train
newly specified models

Deployment
verifier

Table 1: A summary of the three broker components.

Because of information leakage attacks, data providers
cannot directly expose data or model updates computed on
private data. This has motivated a variety of new solutions
that protect the privacy of a model update in federated learn-
ing, such as secure aggregation [7] and differentially-private
federated learning [15].
Sybil attacks. Since data providers join the system anony-
mously, they can generate sybils, or multiple colluding vir-
tual clients, to attack the system [14]. Because of this, a
method for verifying or auditing the identity of data providers
is critical for multi-party ML. This can either be performed
with external authorization or through other sybil-resilient
mechanisms common in modern blockchains [3, 16, 26].

4 BROKERED LEARNING DETAILED
Brokered learning relieves the incentive tension in federated
learning by allowing model curators to parameterize the
components that interface data providers with the shared
model. These components are shown in Figure 2 and their
roles are defined in Table 1, with a list of suggestions for
each component observed in prior work.

Curators define the deployment parameters in brokered
learning: the model type, the learning task, and the services
for provider and model update verification. By defining these
parameters, the model curator dually ensures model utility
and thwarts poisoning attacks from data providers. This

71

APSys ’19, August 19–20, 2019, Hangzhou, China Clement Fung and Ivan Beschastnikh

brokered deployment can be performed securely using pa-
rameters to a smart contract [20, 35] or via a trusted service.

Data providers contribute data to the ML task and con-
trol their participation criteria. Instead of fully trusting the
curator, as they would in federated learning, providers coor-
dinate the learning process with a trusted broker.

Brokered learning allows these providers to contribute to
a shared global model, without being aware of nor trusting
each other. Providers interface with the broker by iteratively
requesting access to the system and sending a correspond-
ing model update. Brokered learning supports a variety of
synchrony models, including total asynchronous [30], bulk
synchronous [22], and hybrid SGD models [18].

While training through SGD, each provider can use their
personal privacy parameters [15] and is not obligated to
reveal more information than needed for successful ML.

A broker is a short-lived process that coordinates the
training. The broker exposes interfaces that are responsi-
ble for brokering the agreement between data provider and
model curator and resolves their tension by dividing their
APIs: as long as model curators specify validation services
that adequately ensure utility, and data providers send model
updates that adequately provide privacy, both parties will
be satisfied. As shown in Figure 2, these interfaces sit as
protective and expressive layers on top of the machine learn-
ing model that would otherwise be vulnerable and non-
negotiable in federated learning.

In our service-based vision, brokers are not intended to be
long lasting, and their sole function should be to broker the
specific agreement between users to facilitate multi-party
ML of a single model. Brokers may be explicitly managed
by governments, blockchains or businesses, all of whom are
incentivized to provide privacy, anonymity and fairness in
distributed ML.

5 TORMENTOR DESIGN
Here we overview TorMentor’s design; a more complete de-
scription is available in prior work [13]. Since data providers
and model curators no longer have to directly interact to per-
form multi-party ML, we envision an extreme example that
showcases a novel setting that would be impossible under
the current model of federated learning: anonymous multi-
party ML. In this setting, data providers and model curators
interact through an anonymous marketplace for distributed
multi-party ML.

We built TorMentor, an example brokered learning system
that realizes this novel anonymous setting. In lieu of trusted
cloud infrastructure or a governing organization, brokers
are run as hidden Tor services [9]. Data providers and model
curators communicate with a hidden Tor service endpoint,

Curator

Time

Broker Provider
curate()

join()
puzzle

solve()

model M0

Mfinal

Solve PoW
cryptopuzzle

Check starting criteria
Start training

gradientUpdate �0

Compute gradient
Apply diff-priv ()
Solve PoW

…

gradientUpdate �n

Check stopping criteria

model Mn

"

…

Validate
ComputeM1

�0

Figure 3: Overview of the TorMentor protocol.

which satisfy the roles defined in Table 1 and expose a mini-
mal API [13].
Design overview. Each TorMentor broker is deployed as a
Tor hidden service with a unique and known .onion domain.
As in brokered learning, data providers may join the learning
process if they satisfy the validation requirements defined
by the model curator. Each broker is associated with a pool
of providers that perform SGD.
Without existing reputation scores or trust between bro-

kers and data providers, the curator defines a validator ser-
vice to ensure the integrity ofmodel updates sent by providers
to the broker. The validator uses 2 elements to verify the
integrity of provider activity in the system. First, a valida-
tion dataset is used to verify a proportion of the incoming
stream of model updates. This dataset is provided by the
model curator and used as the ground truth for the model;
any update that causes a significant degradation in valida-
tion accuracy will be rejected in a Reject on Negative Influ-
ence (RONI) [5]. Secondly, the validator exposes a crypto-
graphic proof of work puzzle [3] that providers are required
to solve before joining the system and again when submit-
ting a model update. The difficulty of this puzzle increases
when providers fail a RONI test; this alleviates the risk of
sybils by significantly increasing the cost of sybil-based poi-
soning attacks [14]. As a default, we validate 10% of all model
updates and use an initial difficulty of 3. When a provider
fails a RONI validation, their puzzle difficulty increases by 1.
Curator API. The curator uses the curate call (Figure 3)
to bootstrap a new model by defining a common learning
objective: the model type, the desired training interface and
a validation service, as described above.
For each model defined by a curator, a single broker is

created and deployed as a hidden service and the system
waits for providers to contact the service with a message

72

Brokered Agreements in Multi-Party Machine Learning APSys ’19, August 19–20, 2019, Hangzhou, China

to join. In TorMentor, a RONI validation dataset is used as
an example of a mechanism for rejecting adversaries, but
can be replaced with any curator desired requirements, in a
programmable form such as a smart contract [35].
Provider API.A provider uses the join call (Figure 3) to join
a curated model. A provider’s data is validated against the
objective when joining. Our prototype only checks that the
size of the model update matches those of the curator dataset,
but a differentially-private method for data valuation [21]
can also be used to verify provider integrity.
To comply with proof-of-work validation, the provider

uses the solve call to join the model and submit model up-
dates, similar to that of the Bitcoin [26] protocol, in which a
cryptographic SHA-256 admission hash is inverted and the
solution is verified, creating a new puzzle once published [3].
Once the proof-of-work is completed, the provider is ac-
cepted as a contributor to the model. Once the desired num-
ber of providers have been accepted, collaborative model
training is performed through the brokered learning proto-
col: each provider computes their SGD update on the global
model and pushes it to the parameter server through the
gradientUpdate function, which models the process of fed-
erated learning.
Protecting providers and curators. Since providers com-
pute gradient updates locally, providers maintain a personal
privacy level ε when calculating differentially-private up-
dates during model training [15]. Some providers may value
privacy more than others and thus will tune their own pri-
vacy risk, while curators want tomaximize their model utility.
In brokered learning, this is handled through the curator-
defined validation service. Model updates that provide insuf-
ficient model utility will be rejected, keeping both the data
provider and the model curator safe. TorMentor is the first sys-
tem to support anonymous ML in a setting with heterogeneous
user-controlled privacy goals.

6 EVALUATION
Credit card dataset. In our evaluation we envision mul-
tiple credit card companies collaborating to train a model
that predicts defaults on credit card payments. However, the
information in the dataset is private to each credit card com-
pany. In this context, a credit agency can act as the curator,
the broker is a commercial trusted service provider, and data
providers are the credit card companies.

To evaluate this use-case we used a credit card dataset [37]
from the UCI machine learning repository [23]. The dataset
has 30,000 examples and 24 features. The features represent
information about customers, including their age, gender
and education level, along with information about the cus-
tomer’s payments over the last 6 months. The dataset also

contains information about whether or not the given cus-
tomer managed to pay their next credit card bill, which is
used as the labeled output for the model.
Prior to training, we normalized, permuted, and parti-

tioned the datasets into a 70% training and 30% testing shard.
For each experiment, the training set is further sub-sampled
to create a single data provider’s dataset, and the testing
shard is used as the curator-provided validation set. Training
error, our primary metric, is calculated as the error when
classifying the entire 70% training shard. However, note that
in brokered learning no single data provider would have
access to the entire training dataset.
Wide-area (WAN) deployment on Azure. We evaluated
brokered learning at scale by deploying TorMentor on a geo-
distributed set of 25 Azure VMs, each running in a separate
data center, spanning 6 continents. Tor’s default stretch
distribution was installed on each VM. We deployed the bro-
ker at our home institution as a hidden Tor service. The
median ping latency (without Tor) from the VMs to the bro-
ker was 133.9ms with a standard deviation (SD) of 61.9ms.
With Tor, the median ping latency was 715.9ms with a SD
of 181.8ms. We evenly distribute a varying number of data
providers across the 25 VMs. Each provider joins the system
with a bootstrapped sample of the original training set (n =
21,000 and sampled with replacement), and participates in
asynchronous model training.

6.1 Scalability and overhead
We evaluated TorMentor’s scalability by varying the num-
ber of data providers. We evaluate the latency overhead by
deploying a new broker and initializing the training process
once all providers have joined. All nodes were honest, held a
subsample of the original dataset, and performed asynchro-
nous SGD.
Figure 4 shows that, when updating asynchronously, the

model convergences at a faster rate as we increase the num-
ber of providers.
We also compared the convergence time on TorMentor

with a baseline brokered learning instance (which is identical
but bypassed Tor). This models a data marketplace in which
anonymity is not a concern, but users still do not want to
share their data. On average, the overhead incurred from
using Tor ranges from 5-10x. For example, with 200 data
providers TorMentor finishes training in 67s and without
Tor it takes 13s.

6.2 Poisoning defenses evaluation
We evaluate the ability of RONI and proof of work as valida-
tion processes in brokered learning when defending against
random poisoning attacks. To do this, we deployed TorMen-
tor in a setting with 8 providers. We then included malicious

73

APSys ’19, August 19–20, 2019, Hangzhou, China Clement Fung and Ivan Beschastnikh

0 100 200 300 400 500 600 700 800

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
in

g
 E

rr
o

r

10 clients

50 clients

100 clients

200 clients

Figure 4: TorMentor model convergence in deploy-
ments with 10, 50, 100, and 200 data providers.

0 25 50 75 100 125 150 175 200
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

T
ra

in
in

g
 E

rr
o
r

10 clients

50 clients

100 clients

200 clients

Figure 5: Model convergence in TorMentor without
Tor with varying number of data providers.

providers with label flipped data [6] and varied both the pro-
portion of malicious providers in the system and the required
drop in model influence for a flagged RONI validation. Each
time a provider failed a RONI validation, the difficulty of their
proof of work puzzle was increased by 1. Figure 6 shows the
training error for the first 250s for a RONI threshold of 2%,
while varying the proportion of poisoning attackers from
25% to 75% and validating 10% of model updates.
As the number of poisoners increases, different effects

can be observed. When the number of poisoners is low (be-
low 25%), the model still converges, but slower than normal.
With 50% poisoning, the model begins to move away from
the optimum, but is successfully defended by the provider
validator, which increases the proof of work required for all
of the poisoners within 30s. From this point, the poisoners
struggle to outpace the honest nodes, and the model contin-
ues on a path to convergence. Lastly, when the proportion
of poisoners is 75%, the increase in proof of work is too slow
to react; the model accuracy is compromised within 20s and
struggles to recover.

Figure 7 shows the execution of model training with 50%
poisoning providers for different RONI validation thresholds.
As the threshold decreases, adversaries are removed from
the system more quickly, allowing the model to recover from
the poisoning damage. Setting the RONI threshold too low

0 50 100 150 200 250

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

in
in

g
 E

rr
o

r

75% poisoners

50% poisoners

25% poisoners

0% poisoners

Figure 6: Training error over time while attacked by a
varying fraction of poisoners. RONI threshold is 2%.

0 50 100 150 200 250

Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 E

rr
o

r

5% RONI

2% RONI

1% RONI

0.5% RONI

Figure 7: Training error over time, when attacked by
50% poisoners. RONI threshold is varied 0.5% – 5%.

is dangerous as it increases the effect of false positives: Fig-
ure 7 shows that the model initially performs poorly due to
incorrectly penalizing honest providers.

From this evaluation, we note that, if a poisonerwas able to
detect this defense, and attempt to leave and rejoin the model,
an optimal proof of work admission puzzle should require
enough time such that this strategy becomes infeasible.
This evaluation shows that even a simple heuristic, such

as validation error, can be effective in verifying the integrity
of model updates sent by data providers in brokered learning.
In practice, a model curator can supply an arbitrary function
to validate providers, using elements like external reputation
scores or data valuation [21].

7 CONCLUSION
We are increasingly relying on ML for our everyday activ-
ities, yet the ML training process is highly centralized. In
this paper we proposed brokered learning as the next step
in evolving federated learning: decoupling the role of the cu-
rator that defines the model, from the aggregator that trains
the model. We also described the design of TorMentor, an
example brokered learning system, that pushes the limits of
multi-party ML by providing anonymity to curators and data
providers through Tor. We hope that learning inspires fur-
ther research in privacy-preserving ML systems that better
consider the incentives of data providers andmodel curators.

74

Brokered Agreements in Multi-Party Machine Learning APSys ’19, August 19–20, 2019, Hangzhou, China

REFERENCES
[1] April 24, 2019. Facebook sets aside $3bn for privacy probe. https:

//www.bbc.com/news/business-48045138
[2] January 21, 2019. Google hit with £44m GDPR fine over ads. https:

//www.bbc.com/news/technology-46944696
[3] Adam Back. 2002. Hashcash - A Denial of Service Counter-Measure.

Technical Report.
[4] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov.

2018. How To Backdoor Federated Learning. ArXiv e-prints (2018).
arXiv:cs.CR/1807.00459

[5] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar.
2010. The Security of Machine Learning. Machine Learning 81, 2
(2010).

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning
Attacks Against Support Vector Machines. In Proceedings of the 29th
International Conference on International Conference on Machine Learn-
ing.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving
Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS).

[8] Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gra-
dient Descent.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The
Second-generation Onion Router. In Proceedings of the 13th Conference
on USENIX Security Symposium.

[10] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations
of Differential Privacy. Foundations and Trends in Theoretical Computer
Science 9, 3-4 (2014).

[11] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model
Inversion Attacks That Exploit Confidence Information and Basic
Countermeasures. In Proceedings of the 2015 ACM SIGSAC Conference
on Computer and Communications Security (CCS).

[12] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. 2014. Privacy in Pharmacogenetics: An End-
to-End Case Study of Personalized Warfarin Dosing. In USENIX SEC.

[13] Clement Fung, Jamie Koerner, Stewart Grant, and Ivan Beschastnikh.
2018. Dancing in the Dark: Private Multi-Party Machine Learning in
an Untrusted Setting. arXiv e-prints (2018). arXiv:cs.CR/1811.09712

[14] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2018. Miti-
gating Sybils in Federated Learning Poisoning. ArXiv e-prints (2018).
arXiv:cs.LG/1808.04866

[15] Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially
Private Federated Learning: A Client Level Perspective. NIPSWorkshop:
Machine Learning on the Phone and other Consumer Devices (2017).

[16] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for
Cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP).

[17] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. 2017.
Deep Models Under the GAN: Information Leakage from Collaborative
Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security.

[18] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R. Ganger, Phillip B. Gibbons, and Onur Mutlu. 2017. Gaia:
Geo-DistributedMachine LearningApproaching LAN Speeds. InNSDI.

[19] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubin-
stein, and J. D. Tygar. 2011. Adversarial Machine Learning. In Proceed-
ings of the 4th ACM Workshop on Security and Artificial Intelligence
(AISec).

[20] Nick Hynes, David Dao, David Yan, Raymond Cheng, and Dawn Song.
2018. A Demonstration of Sterling: A Privacy-preserving Data Mar-
ketplace. Proceedings of the VLDB Endowment 11, 12 (2018).

[21] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes,
NeziheMerve Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos.
2019. Towards Efficient Data Valuation Based on the Shapley Value. In
Proceedings of the 22th International Conference on Artificial Intelligence
and Statistics (AISTATS).

[22] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14).

[23] M. Lichman. 2013. UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml

[24] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. 2017. Communication-Efficient Learning
of Deep Networks from Decentralized Data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics.

[25] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. 2018. Infer-
ence Attacks Against Collaborative Learning. ArXiv e-prints (2018).
arXiv:cs.CR/1805.04049

[26] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash sys-
tem. (2009).

[27] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph,
Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and
Kai Xia. 2008. Exploiting Machine Learning to Subvert Your Spam
Filter. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits
and Emergent Threats.

[28] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious
Multi-Party Machine Learning on Trusted Processors. In USENIX SEC.

[29] Rebekah Overdorf, Bogdan Kulynych, Ero Balsa, Carmela Troncoso,
and Seda Gürses. 2018. Questioning the assumptions behind fairness
solutions. NeurIPS Workshop: Critiquing and Correcting Trends in
Machine Learning (2018).

[30] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011.
Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In Advances in Neural Information Processing Systems 24.

[31] Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D.
Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. 2009. AN-
TIDOTE: Understanding and Defending Against Poisoning of Anomaly
Detectors. In Proceedings of the 9th ACM SIGCOMM Conference on In-
ternet Measurement.

[32] Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. 2019.
The Seven Sins of Personal-Data Processing Systems under GDPR. In
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).

[33] Muhammad Shayan, Clement Fung, Chris J. M. Yoon, and Ivan
Beschastnikh. 2018. Biscotti: A Ledger for Private and Secure Peer-to-
Peer Machine Learning. ArXiv e-prints (2018). arXiv:1811.09904

[34] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep
Learning. In Proceedings of the 2015 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS).

[35] Nick Szabo. 1997. Formalizing and Securing Relationships on Public
Networks. First Monday 2, 9 (1997).

[36] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and
XiaoFeng Wang. 2017. Privacy Loss in Apple’s Implementation of
Differential Privacy on MacOS 10.12. (2017).

[37] I-Cheng Yeh and Che-hui Lien. 2009. The Comparisons of Data Mining
Techniques for the Predictive Accuracy of Probability of Default of
Credit Card Clients. Expert Systems with Applications: An International
Journal 36, 2 (2009).

75

https://www.bbc.com/news/business-48045138
https://www.bbc.com/news/business-48045138
https://www.bbc.com/news/technology-46944696
https://www.bbc.com/news/technology-46944696
http://arxiv.org/abs/cs.CR/1807.00459
http://arxiv.org/abs/cs.CR/1811.09712
http://arxiv.org/abs/cs.LG/1808.04866
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/cs.CR/1805.04049
http://arxiv.org/abs/1811.09904

