Proposing Guidelines and Approaches to
Make Anomaly Detection More Effective for
Industrial Control Systems

Clement Fung
CMU-S3D-25-118
September 2025

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Lujo Bauer (Chair)
Eunsuk Kang
Vyas Sekar
Michael K. Reiter (Duke University)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy in Societal Computing.

Copyright © 2025 Clement Fung

This material is based upon work supported by: the U.S. Army Research Office and the U.S. Army Futures
Command under Contract No. WO911NF-20-D-0002 and Contract No. WO911NF-20-F-0015; the U.S. Depart-
ment of Defense under Contract No. FA8702-15-D-0002; DARPA GARD under Cooperative Agreement No.
HR00112020006; the National Science Foundation under Award No. 1801391 and Award No. 2338301; the De-
fense Science and Technology Agency; the Bill and Melinda Gates Foundation; the Secure and Private IoT initiative
at Carnegie Mellon Cylab (IoT@CyLab); and Mitsubishi Heavy Industries through the Carnegie Mellon CyLab
partnership program.

The views and conclusions contained in this document are those of the author and do not necessarily reflect the
official policies or positions, either expressed or implied, of any sponsoring institution, and no official endorsement
should be inferred.

Keywords: Security, Machine Learning, Anomaly Detection, Industrial Control Systems

To my parents, Felix Fung and Ivy Fung, whose constant example of strong work ethic and

self-belief has guided my life.

v

Abstract

Industrial control systems (ICS) govern critical infrastructure and processes, such as power gen-
eration, chemical processing, and water treatment. Given their widespread impact and their
critical nature, there is a strong incentive for adversaries to attack ICS. An adversary that gains
access to an ICS network can manipulate its process values to cause physical damage and harm.
Anomaly-detection methods based on machine learning (ML) can detect these manipulations
from real-time data and are commonly proposed for defending ICS. To make anomaly detection
more effective for ICS, this thesis investigates and proposes solutions to several challenges when
applying anomaly detection to an ICS. First, it is unclear what ML models and methods are best
for detecting ICS anomalies; we comprehensively evaluate prior approaches and compare their
performance, identifying what strategies were most effective. Second, it is unclear if and how
the outputs of ML-based anomaly-detection approaches can be used to diagnose ICS anomalies;
we evaluate a variety of approaches for attributing ICS anomalies to the underlying components
that were manipulated. Third, many anomaly-detection approaches proposed in prior work are
based on general-purpose ML models that learn spurious relationships; we propose a method that
embeds ICS-specific domain knowledge into structurally sparse ML models to improve detec-
tion, attribution, and robustness. Finally, to better understand how ML-based anomaly-detection
approaches could be used more effectively for ICS in practice, we conduct an interview-based
study to understand the workflows and perspectives of practitioners that work with ICS, and we
recommend ways for researchers to design ML-based approaches for better adoption in ICS.

Thesis Statement: To make anomaly detection more effective for industrial control systems
(ICS), we design approaches for detecting and attributing ICS anomalies and propose guide-
lines for choosing and configuring anomaly-detection models. In particular, we demonstrate that
adopting ICS-specific models and objectives improves detection and attribution, and we pro-
pose new approaches for use cases beyond real-time detection, such as post-hoc diagnosis. Our
approaches and guidelines improve effectiveness across the ICS anomaly-detection workflow:
(i) when detecting anomalies; (ii) when identifying the root cause of anomalies; and (iii) when
deploying, using, and maintaining anomaly-detection systems.

vi

Acknowledgments

This thesis serves as the culmination of a six-year journey in which I benefited from immense
professional and personal growth. I would like to acknowledge several individuals who have
contributed to this journey; without their help, I would not have been able to complete this thesis.

I would like to thank those who helped foster my professional growth. I am incredi-
bly grateful to have been coached by two wonderful advisors, who have contributed deeply to
building my research abilities and kick-starting my academic career.

First, I would like to thank my PhD thesis advisor, Lujo Bauer. In addition to advising me
throughout our numerous research ideas, setbacks, and successes, Lujo has worked tirelessly in
teaching me how to think about my research more critically. Prior to starting my PhD, I had a bit
of a straightforward and naive view of research as an ivory tower—Lujo taught me the importance
of thinking about my research as a more serious endeavor. Lujo has always brought an objective,
principled, and measured approach to our research, and he has persistently encouraged me to
think more deeply about research impact, communication, and methods. I will always remember
his lessons, and I hope to maintain his principles as I continue onwards in my research career.

Second, I would like to thank my MSc thesis advisor, Ivan Beschastnikh. Although the
research we conducted together is not part of this thesis, his lessons set the foundation for my
work and my thinking. Ivan first took a chance on me many years ago when I had zero research
experience; he showed me what it took to conduct research and more importantly, he helped me
believe that I was able to do it. I am very grateful that we have managed to stay in touch over
the years of my PhD, and I doubt that I would have applied to PhD programs if I had not been
fortunate enough to work closely with him.

I would also like to thank the rest of my PhD thesis committee: Eunsuk Kang, Vyas Sekar,
and Mike Reiter. Each of them has not only given me helpful feedback that improved this thesis,
but has also generously provided their perspectives on the greater context of my research. They
have helped and encouraged me to present my work with a more thoughtful, careful, and con-
fident perspective, in connecting to research beyond the specific scope of machine learning for
ICS security.

For much of the work described in this thesis, I am grateful to have collaborated closely with
two brilliant postdocs: Eric Zeng and Alessandro Erba. Their combined expertise has helped
position this thesis with a broad, end-to-end framing, and I am very proud of that. Eric, thank
you for teaching me how to thoughtfully conduct user studies and for maintaining such a positive
attitude throughout our paper rejections and recruitment challenges. Alessandro, thank you for
expanding my understanding of ICS security with your insightful perspectives on ICS threat

Vil

models and attacks.

I am fortunate to have overlapped significantly with many excellent colleagues as members
of the PWWL research group: Omer Akgul, Sruti Bhagavaluta, Sze Yiu Chau, Camille Cobb,
Andy Gallardo, K.A. Garrett, Natalie Janosik, Trevor Kann, Hobin Kim, Keane Lucas, Weiran
Lin, McKenna McCall, Ronghao Ni, Phyllis Poh, Nuno Sabino, Mahmood Sharif, Brian Singer,
Michael Stroucken, Josh Tan, Jenny Tang, Rui Wang, Ben Weinshel, Owen Wu, and Eric Zeng.
They have been generous with feedback on my research ideas, presentations, and paper drafts. |
am proud that we have managed to foster such a great research environment.

Finally, the CyLab staff, particularly Brittany Frost and Brigette Bernagozzi, have contributed
substantially to enriching the lives of the many PhD students in CyLab, including myself.

I would like to thank my many collaborators throughout my PhD. I am fortunate to have
collaborated with several individuals over the past six years, included on work described in this
thesis and on other published or ongoing works. Each of these collaborations has been valuable
in broadening my perspective and contributing to my growth as a researcher.

Henry Wong, Karen Li, Stanley Chen, Shreya Srinarasi, and Hay Bryan Phee all did great
work on our various research projects, contributed valuable insights, and allowed me to refine
my student-mentorship skills.

My first PhD research project and publication resulted from a collaboration with Billy Melicher
and Limin Jia. This early project on ML-based DOM-XSS detection taught me many of my first
lessons in computer security research.

In the early stages of my PhD, I collaborated with my former research team at UBC: Chris
Yoon, Muhammad Shayan, and Ivan Beschastnikh. We managed to complete and publish mul-
tiple papers in federated-learning security that we started during my Masters degree. I am very
proud of this work, which was my first major research thread and gave me the confidence to
pursue research further.

I am also grateful for my collaborators from KIT: Alessandro Erba, Christian Wressnegger,
and Denis Wambold. They generously hosted my visit to Germany and have provided many
useful perspectives on our work; I am looking forward to continuing our ongoing work and
achieving exciting and fruitful outcomes.

I had a valuable summer internship experience with the Bosch Center for Artificial Intelli-
gence, where I collaborated and published with Maja Waldron, Chen Qiu, and Aodong Li. From
working with them, I learned many useful skills and lessons in working with foundation models
and visual anomaly-detection benchmarks.

My collaborators from CMU AirLab, Rebecca Martin, Nikhil Keetha, and Sebastian Scherer,
have been gracious in teaching me about the world of aerial autonomy. We published an insight-
ful paper on the robustness of aircraft detection systems, and we continue to collaborate further.
It has been both interesting and valuable to learn about this domain and find similarities and
differences with research in industrial control systems.

Finally, much of the work presented in this thesis was done in collaboration with Mitsubishi
Heavy Industries (MHI). I would like to thank them for their sponsorship, for generously hosting
my visit to Tokyo, and for providing valuable perspectives from industry on my research objec-
tives and outcomes.

viil

And finally, I would like to thank those who supported me throughout my PhD and
helped me grow as a person. I feel incredibly grateful to have received much support over the
course of my PhD, throughout many challenges and difficulties. Several individuals have helped
me grow, taught me many life lessons, and given me valuable perspective.

First, I would like to thank the many friends I have made in Pittsburgh: Alejandro Cuevas,
Amelia Hare, Keane Lucas, Archana Iyer, Brian Singer, Grace Conway, Trevor Kann, Madeleine
Howell Kann, Eric Zeng, Jin-Dong (Mark) Dong, Taro Tsuchiya, Mihir Bala, Riya Dedani,
Joseph Reeves, Kevin Killeen, Tess Killeen, Ben Kolligs, Hayley Kolligs, and Jeff Brandon. Six
years ago, Pittsburgh was a city in which I knew nobody. Friends, thank you for contributing to
countless great memories over these six years. I will very fondly remember our banter, board
game sessions, nights out on the town, and heartfelt conversations. You are among the reasons
why I have grown to love and appreciate Pittsburgh so much, and I will always treasure this
period of my life because of this.

I would like to thank members of the Kroon family: David Kroon, Gayle Kroon, Lerae
Kroon, Colin McWhertor, Anna Kroon Sonnen, Mark Sonnen, Jenice Steenwyk, Jesse Steen-
wyk, Evan Kroon, and Graham Kroon, for being curious about my work and being supportive
regardless. I would also like to thank Alvin Kroon-McWhertor, Frank Kroon-McWhertor, Mag-
gie Sonnen, Jack Sonnen, Addilynn Steenwyk, and Nolan Steenwyk for constantly reminding
me of the importance of education, curiosity, and maintaining hope for the future. I gained so
many new family members during the course of my PhD, and I am grateful for each and every
one of them.

I would like to thank my brother and my sister-in-law: Martin Fung and Meagan Thang. It
has been a joy to grow alongside both of them over these past few years and to receive their great
love and support from afar.

I would like to thank my parents, Felix Fung and Ivy Fung. My parents have always demon-
strated strong work ethic, good principles, and belief in oneself. I could not have asked for better
role models in my life, and I hope to make them proud as I continue in my career. I am the first to
complete a PhD in our extended family; although the world of research is very foreign to them,
they have always believed in me and encouraged me to follow my own path.

I would like to thank my cat, Winona, whom I adopted early in my PhD and has been with
me ever since. Although she imposed herself on many of my Zoom calls, she really helped me
during the lonely days of the pandemic; she somehow always knew the perfect time to provide
affection when I was feeling sick or feeling sad.

Finally, and most importantly, I would like to thank my wife, Abby Kroon Fung. In parallel
to the accomplishments in this thesis, I am very, very proud of what we have accomplished and
built over the past few years. Abby, I could not have imagined six years ago, even in my wildest
dreams, where life has taken us now. Thank you for celebrating me when times were good,
believing in me when times were tough, and supporting me always. Thank you for fearlessly
joining me in the leap of faith that we call love and life.

1X

Contents

[Abstract

[Acknowledgments|

(L__Introduction|

(1.1 ~ Comparisons to similar research areas|

2~ Background|
[2.1 Attacks on industrial control systems (ICS),
[2.2 Datasets for ICS anomaly detection|
[2.3 Traditional anomaly detection metrics|
2.4 Models for process-level ICS anomaly detection|
[2.5 Attribution methods for machine-learning models|

3 Related workl
[3.1 Meta-studies of time-series anomaly detection|
[3.2 Explanations 1n other security-relevant contexts|
(3.3 User studies of practitioners 1n contexts similar to ICS anomaly detection|

[4 Comparing models and techniques used for detecting ICS anomalies|

.2 Describing the reconstruction-based ICS anomaly detection process|
4.3 Comparing methodologies from priorwork{
“4.3.1 Comparing models, hyperparameters, and metrics|.
4.3.2 Comparing training and data-processing techniques|.
4.4 Comparing ML model architectures and datasets for ICS anomaly detection| . . .
“.4.1 Experimentsetup|
@.4.2 Optimizationresults|
4.5 Tuning and evaluating with range-based metrics|
4.5.1 Issues with the pomnt-Fl score]
4.5.2 Range-based performance metrics|
“4.5.3 Using range-based metrics to tune detection hyperparameters|.
4.5.4 Using range-based metrics to select model hyperparameters|

X1

11
11
12
13

A6

SUMMALY| . . . o o o v ot e e e e e e e e

Evaluating attributions for ICS anomaly detection|

52

Methodology|

[3.2.1 Datasets used for training and evaluation|
[5.2.2 Implementing ICS anomaly detection|
[5.2.3 Attribution methods for ICS anomaly detection|
[5.2.4 Evaluation metric for attributions: AvgRank|.

53

Results: Evaluating attributions of ICS anomalies|

[5.3.1 Assessing prior attribution strategies| L.
[5.3.2 Selecting attribution methods with a counterfactual benchmark|
[5.3.3 Evaluating ML-based attribution methods|

54

Results: Factors that affect attribution accuracy|

[5.4.1 Effect of detection timing on attributions|
[5.4.2 Effect of attack properties on attributions|
[>.4.3 Evaluating against stealthier manipulations|
[5.4.4 Evaluating ensembles of attribution methods|

53

Survey: ICS operator perceptions of attributions|

[5.6.2 Recommendations for practitioners|

57

SUMMATY| v v v et e e e e e e e e e e e e e e e e e

(6

CYPRESS: a structurally sparse model for ICS anomaly detection|

6.2

Model architectures for anomaly detection| 0L

[6.2.1 Data descripttonmodels|
[6.2.2 Models used for ICS anomaly detection|

6.3 CYPRESS: Cyber-Physical Representations with Sparse Structures|
[6.3.1 Specifying iter-feature relationships| 0 L.
[6.3.2 Learning weights in CYPRESS|

[6.4 Analyzing spurious relationships learned by ICS anomaly-detection models| . . .

[6.5 Evaluationsetup|. e
651 Baselinemodelsl
652 CYPRESS|

6.6 Evaluationresultsl L
[6.6.1 Anomaly detection| L.
[6.6.2 Anomaly attribution| L Lo
[6.6.3 Robustness to stealthy attack strategies|

6.7 Future work and limitations|

6.8 Summary|

Xii

29
29
30
30
32
33
35
36
36
37
39
40
40
44
46
48
49
52
52
53
54

(7 Examining practitioners’ perspectives of ML-based tools for ICS alarms| 77

(/.1 Introduction] L 77
[7.2 Participants and methodology|. oo oo 78
[/.2.1 Participant recruitment and demographics| 79

[/.2.2 Interview methodology|. 80

[/.2.3 Analysis methodology| 80
T2ZAEMICS o oo 81

725 Timitations] 82

[7.3 Results: Current practices for alarms m ICS| 82
[/.3.1 Systems forraisingalarms| 0 0oL 83

(7.3.2 Human tasks in alarm workflowsl 84

[/.3.3 Challenges with alarms|. 86

[£.3.4 Factors that affect alarm workflows| 87

[/.3.5 Adopting vendor tools m ICS|, 89

[/.4 Results: Perceptionsof AIl 90
[/.4.1 Conceptual modelsof AIl, 90

[/.4.2 Perceived benefits of adopting Al mICS|. 90

[/.4.3 Perceived barriers to adopting Alin ICS|. 91

[7.5 Analysis and recommendations| Lo Lo 92
[/.5.1 Deploying Al'in systems foralarms| 92

[7.5.2 Using Al to support alarm workflow tasks| 93

[7.5.3 Navigating barriers to Al adoption| 94

[7.6 Summary| 95

8 Conclusion| 97
[8.1 Connecting torelatedwork| 00 oL 97
82 Futureworkl L 98
(8.3 Fimal summary| 100

A" Survey text used in Chapter |5 101
(B Interview scripts used in Chapter|/| 105
(C Qualitative codes used in Chapter [/| 109
Bibliography 113

Xiii

X1V

List of Figures

2.1~ Overview of a layered ICS architecture.| 5

4.1 An overview of the anomaly-detection process (left) and model optimization |

pipeline (right).| 16

4.2 A comparison of training runs that demonstrates the impact of random seeds and |
early stopping.|. L 20

.3 'The final point-F1 scores of each model when trained and tuned on three experi- |

[mental ICS datasets.. 22
4.4 'Two detection examples that demonstrate the difference between point-F1 and |
range-F1.| e 24

4.5 The final range-F1 scores of each model when trained and tuned on three exper- |
[imentalICSdatasets] 27
[5.1 An overview of the ICS anomaly attribution process.| 30
0.2 The results of our counterfactual benchmark test of attribution methods. 38
0.3 Attribution results for ICS anomalies at the time of detection.) 39
[5.4 An example that shows different timing strategies for attributing an ICS anomaly.| 40
0.5 Attribution results for ICS anomalies based on relative detection timel 41
[5.6 Attribution results for ICS anomalies with different timing strategies.|. 43
[5.7 Attribution results for ICS anomalies using a weighted average of attribution |

[methods.. e 48

[6.1 A comparison of the internal structures of CNNs, FCDD, FSNs, and CYPRESS| 57
[6.2 An illustration of the graph specification and training processes for CYPRESS| . 58

[6.3 Methodology and results of our counterfactual test for spurious relationships.| . . 61
[6.4 Feature-based and PLC-based attribution results for best-performing anomaly |
[detectionmodels] 68
[6.5 Feature-based and PLC-based attribution results for anomaly detection models.| . 69
0.6 An overview of an ICS and the threat models we consider) 70
[6.7 Results of stealthy replay attacks and variable manipulation attacks on best- |
| performing anomaly detection models.| 0000, 71
[6.8 Attack success rates for evasion attacks on best-performing anomaly detection |
[models) 72
[6.9 CDF of attack success rates for evasion attacks on best-performing anomaly de- |
[tectionmodels] 73

XV

[7.1 A mapping of participant percentages to qualitative terms used in this work.| . . . 81
[7.2 An overview of the different tasks performed in ICS alarm workflows.| 82

xXvi

List of Tables

4.1 A categorization of prior work 1n ICS anomaly detection, based on which model |

architectures, datasets, and metricsareused.| 18

4.2 A categorization of prior work 1n ICS anomaly detection, based on which pre- |

| processing and model training techniques areused.| 19
4.3 'The effect of tuning metric on final detection outcomes for each optimal model |

[proposed mprior work.| Lo L 26
[5.1 A summary of the manipulations used for evaluation in prior work 32
[5.2 'The number of detected attacks on each dataset for each anomaly-detection model.| 33
[5.3 The attribution accuracy of the baseline attribution strategy from prior work.|. . . 37
[5.4 The number of attacks captured in different detection-timing cases.|. 41
[5.5 The results of various statistical tests for the impact of attack factors on attribu- |

| tION ACCUTACY.| . + « & v v v e v e e e e e e e e e e e e e e e 45
[5.6 Attribution results for ICS anomalies with stealthy manipulation strategies.| . . . 47
[5.7 List of survey participants for work presented in Chapter|5| 51
[5.8 Participants’ ratings for the usefulness of hypothetical attribution outputs.| 51

[6.1 A comparison of ML model architectures used in prior work for ICS anomaly |

[detection e e e e 56
[6.2 Parameter count and inference times for different anomaly detection models.|. . . 64
[6.3 Detection results for CYPRESS and baseline models, based on the point-FI1.[| . . 65
[6.4 Detection results for CYPRESS and baseline models, based on the range-F1.| . . 66
[7.1 List of survey participants for work presented in Chapter|(/| 80
[7.2 A list of the different tasks performed for ICS alarms, with opportunities for Al |

| adoption.] e e e e 92
[A.1 Sample output from the detector used in the survey of operators.| 102
[C.1 Codes for responses in Part I of our interview script.| 110
[C.2 Codes for responses 1n Part III and Part IV of our interview scripts.| 111

Xvil

XViil

Chapter 1

Introduction

Industrial control systems (ICS) govern critical infrastructure, such as water treatment, power
generation, and chemical processing. Because of their criticality and wide-ranging impact,
ICS are common targets for attacks [162]. For example, the 2016 BlackEnergy attack on the
Ukrainian power grid caused over 200,000 people to lose electric power for several hours [[141]],
and the Colonial Pipeline attack disrupted oil production in the United States for five days [23].

One strategy for attacking ICS is to manipulate process data in real-time: an attacker that
gains access to an ICS network and manipulates a subset of its process values can destabilize the
ICS to cause physical damage and harm [32,164, 70,1106, 116]. To prevent such attacks from caus-
ing attacker-intended damage, researchers have proposed anomaly-detection approaches that can
be used to detect manipulated ICS process values in real time [67, 107, [178]. Researchers have
proposed different types of process-level ICS anomaly detection, including approaches based on
invariants [[1, 8,156, [176], program-level models [84, 93], clustering methods [[15}105]], physics-
based models [144, [153], lightweight machine-learning (ML) methods [32, [73} [114 179, [190],
and deep learning models [43} 59, 77, 101,102, 135, 203].

In this thesis, I investigate the effectiveness of ML-based anomaly-detection approaches, both
based on lightweight models and based on deep learning, which are becoming increasingly popu-
lar [107, 120} [177]. These approaches first train a model to recognize and reconstruct the process
values expected during normal ICS operation, and then use these models to detect when an ICS
deviates from its safe, expected operation. Sufficiently high deviations are used to indicate an
anomaly. Although researchers report strong detection performance with such approaches, they
have yet to achieve widespread effectiveness and adoption [10} 136} [74) [166]. To improve the
effectiveness and adoption of anomaly detection for ICS, I design approaches for detecting and
explaining anomalies and propose guidelines for choosing, configuring, and deploying anomaly-
detection models. These approaches and guidelines are used across the anomaly-detection work-
flow:

* When detecting anomalies: evaluating which model architectures work best for detection;
identifying the best techniques for training and evaluating models; and tuning, designing,
and developing models based on domain-specific needs.

* When identifying the sources of anomalies: designing and developing approaches to
attribute detected anomalies to manipulated ICS components; and analyzing when and

1

why certain approaches are more effective than others based on ICS attack and defense
configurations.

* When end-users and organizations interact with anomaly-detection systems: exam-
ining how ICS are monitored in practice; and recommending guidelines to use, maintain,
and deploy anomaly detection at organizations that work with ICS.

1.1 Comparisons to similar research areas

For this thesis, I build on existing work in ICS anomaly detection while also adopting or adapting
approaches designed for other contexts. In this section, I clarify the scope of this thesis with
respect to similar research areas and comment on how the distinct properties of ICS anomaly
detection suggest the need to design new approaches.

Cyber-physical-systems security Cyber-physical systems (CPS) are systems that combine
computational logic with the physical world, often through sensors and actuators; ICS are gener-
ally included in the definition of CPS. Within CPS security, other research topics include the
security of robotic vehicles [35, [136, [152] and the internet-of-things (IoT) [33, 40, 47} 58]].
One type of approach for securing CPS (including ICS) involves training time-series anomaly-
detection models to detect harmful behaviors [, 188} [120]; this thesis focuses on evaluating
such methods, proposing guidelines for using them, and developing new techniques to make
them more effective for ICS. An alternative type of approach for CPS security involves verify-
ing physical properties in computed values, which requires directly modeling the physics in a
CPS [35, 147, 136]. To produce a physical model of a CPS, researchers often must assume a
simple system (i.e., systems with only a few actuators [35,1136]) or well-defined operational sce-
narios (e.g., pre-defined driving scenarios for vehicles [200]). Such assumptions are infeasible
for many ICS, which can require dozens of actuators for chemical or fluid processes [9, 23, 69]
and must operate constantly to support critical infrastructure. Although physical-property verifi-
cation can be effective for some ICS [67, 184,153, general-purpose physics-based approaches for
ICS security are difficult to adopt, as ICS are highly varied in their industries, properties, and op-
erations. As a more general alternative, this thesis focuses on ICS security through data-driven,
learning-based approaches that apply to a wider variety of operational contexts.

Security operations ICS anomaly detection involves detecting and responding to events from
time-series data, with objectives such as reducing detection times, reducing false positives, and
producing alerts that are interpretable by operators. These objectives are common to tasks in
other research areas in security operations, such as security operations centers (SOCs) [12} [125,
202] and network intrusion detection systems (NIDS) [16, [17, 27, 31, [126]. ML-based ap-
proaches for SOCs, NIDS, and ICS anomaly detection commonly use unsupervised time-series
anomaly-detection approaches, and advances in such approaches can likely be applied across
these areas.

Research findings in NIDS and SOCs can be applied to the information technology (IT) layers
of ICS, but will not necessarily translate to the operational technology (OT) layers that interact

2

more closely with the physical process. ICS anomaly detection is distinct in the type of data
that it operates on, which introduces new challenges and presents opportunities for unique solu-
tions. First, ICS anomaly detection uses data from physical processes and process control, which
contains logical and physical dependencies between features. Solutions for security operations
are generally designed for network or host data, where such dependencies between features are
often not as strong. Additionally, since features in ICS directly correspond to physical devices,
attribution methods can be used to directly suggest locations for operator investigation without
additional information sources. NIDS and other SOC tools often operate on engineered features
from network or host data, where additional solutions to convert features to operator interpreta-
tions are needed [87, 1129, |186]].

Summary Although anomaly detection is used and implemented in a wide variety of contexts,
ICS possess distinct properties that make them different from many of these other contexts. Com-
pared to many CPS in general, ICS are often too complex to model completely with physics,
which motivates the need for ML-based approaches, and rely on organizational teams for con-
stant operation, which suggests investigation into current organizational perceptions and informs
our anomaly-detection evaluations with specific tasks and objectives. Compared to many secu-
rity operation contexts, ICS interact with sensor and actuator data from physical components
with inter-feature dependencies, allowing new approaches to leverage such dependencies. In this
thesis, we build on research for anomaly-detection approaches suggested for both CPS and for
more general contexts; similarly, the findings of our work could have implications for specific
CPS or IT security contexts outside of ICS, though investigating these is outside the scope of this
thesis.

1.2 Thesis outline

This thesis is comprised of the following chapters:

* In Chapter[2] I cover the background for this thesis in ICS security, anomaly-detection
models, and attribution methods for deep-learning-based models.

* In Chapter[3] I cover related work for this thesis, composing multiple areas of research
in contexts related to ICS security: time-series anomaly detection, root-cause analysis of
time-series anomalies, and user studies of practitioners in security-relevant contexts.

* In Chapter 4] I describe work that investigates what models and techniques are most effec-
tive for detecting ICS anomalies. In this work, my collaborators and I evaluate previously
proposed ICS anomaly-detection approaches with a common methodology: comparing
deep-learning-based models, training and data processing techniques, and metrics used
for ICS anomaly detection. In contrast to what is suggested in prior work, we find that
the choice of model hyperparameters for deep-learning-based models plays a small role
in determining which approaches work best. We instead find that data processing, train-
ing methods, and the choice of metrics have a much larger impact on anomaly-detection
effectiveness. This work is published in the 27th European Symposium on Research in
Computer Security (ESORICS 2022) [59].

* In Chapter 3] I describe work that investigates if and how attributions can be used to help
operators with anomaly diagnosis. In this work, my collaborators and I evaluate how accu-
rate attribution methods are at identifying which features were manipulated in an attack on
ICS. We find that prior, off-the-shelf attribution methods are ineffective for ICS anomaly
detection; furthermore, factors such as the timing of attribution input and the type of fea-
ture that was manipulated affect how well attribution methods perform and which methods
are best. We ultimately propose an approach that uses an ensemble of attribution meth-
ods, and we showed that it performs best. This work is published in the 375t Network and
Distributed System Security Symposium (NDSS 2024) [60].

* In Chapter[6] I propose and describe the evaluation of a technique that makes anomaly
detection and attribution more effective for ICS by augmenting anomaly-detection models
with domain-specific knowledge. In this work, my collaborators and I use spatial and logi-
cal information from an ICS to improve prior anomaly-detection approaches; we represent
an ICS as a connected graph, and we use these graphs to build CYPRESS, a novel, struc-
turally sparse anomaly detection model. We ultimately show that, by enforcing sparse
representations of ICS in CYPRESS, we can train models that are competitive with the
state-of-the-art in detection, outperform baselines in attribution and robustness, and re-
quiring far fewer model parameters than deep-learning-based models. This work is in
submission to the 35th USENIX Security Symposium (USENIX Security 2026).

* In Chapter[7] I describe work that investigates opportunities to make ICS anomaly de-
tection more effective in practice. In this work, my collaborators and 1 conduct semi-
structured interviews with practitioners who monitor ICS and protect ICS from potentially
harmful anomalies, asking them about (i) the tools and technology used to monitor ICS
and raise alarms, (ii) the human tasks that are commonly performed with alarm data, and
(i11) their perspectives on machine-learning-based approaches and their potential to help
with ICS anomalies. We analyze these interview responses and identify opportunities
for machine-learning-based tools to help with ICS anomalies, by focusing on assisting
with anomaly diagnosis and alarm management. We also make recommendations for re-
searchers to more effectively adopt machine-learning-based approaches to protect ICS.
This work is published in the 21st Symposium on Usable Privacy and Security (SOUPS
2025) [61]].

* Finally, in Chapter 8] I connect the findings from this thesis with the greater context of re-
lated work. I also propose directions for future work in ML-based ICS anomaly detection,
and I provide a final summary of the thesis.

Chapter 2

Background

In this chapter, I cover the underlying technologies, datasets, and methods used in this the-
sis. I build on these background works to design new approaches for detecting and attributing
anomalies in ICS. I first describe ICS (Section 2.1)), attacks on ICS (Section [2.1]), and public ICS
datasets used for evaluation in research (Section [2.2)). I then describe models that are used to de-
tect ICS anomalies (Section 2.4) and methods that attribute machine-learning model predictions
to their input features (Section 2.3)).

2.1 Attacks on industrial control systems (ICS)

ICS monitor and control physical, safety-critical processes. ICS are interconnected systems that
are separated into layers of access and function in the hierarchical Purdue model of ICS [91].

A ERUEn Historian
Servers
Level 3 &:
SCADA
Level 2
Network & L
Controller

Level 1

Level 0 Device e e e

Figure 2.1: An overview of a typical, layered ICS architecture with examples of compromised endpoints and com-
munication channels.

Figure 2.1|shows an example of the layers in an ICS. The Purdue model divides an ICS into lev-
els: from the physical process (Level O, the strictest level of access) to higher-level applications
(Level 3, less strict). Sensors and actuators (Level 0) provide feedback from and input to the
physical process. Programmable logic controllers (PLCs, Level 1) directly interface with sensors
and actuators to control the ICS process. Supervisory control and data acquisition (SCADA,
Level 2) governs multiple PLCs by collecting process data and providing an interface for oper-
ators to control and analyze the physical process [168]. With the exposure of ICS environments
to the Internet and third parties [162], the potential of compromise has increased significantly.
If an attacker compromises parts of an ICS in Levels 0-2, they can manipulate the data being
sent over the network to cause process degradation or failure [116]]. To prevent these potentially
harmful outcomes, it is critical to monitor ICS networks for signs of potential compromise and
manipulation.

In this thesis, I focus on multiple aspects of ICS anomaly detection, spanning from the ef-
fectiveness of anomaly-detection models (Chapter] Chapter[6)), techniques that help identify
which feature was manipulated (Chapter[5] Chapter[6), and how users would interact with and
use anomaly-detection systems (Chapter 7).

2.2 Datasets for ICS anomaly detection

The works presented in this thesis use a variety of data sources, ranging from public datasets to
simulation environments.

Public datasets We use three public datasets for evaluation: BATADALE] [172]], SWaTE] 691,
and WAD [9]. All three datasets are provided by the Singapore University of Technology
and Design iTrust Lalﬂ Each dataset contains one or more multi-day executions of an ICS,
including benign executions (i.e., data from normal operation) and attacked executions (i.e., data
from operations where pre-defined manipulations are performed). In the benign executions, all
samples are labeled as benign (i.e., y = 0). In the attacked executions, samples are labeled for
whether they were collected during an attack or not (i.e., y = 1 or y = 0 respectively). The
attacked executions for each dataset include documentation that reports the start and end time of
each attack, the component(s) that were manipulated, and the values used in each manipulation.
For each system, we use the corresponding benign executions for unsupervised model training,
and we use the corresponding attacked executions for evaluating our trained models.

Simulation We use two simulators to generate data for evaluation: the Tennessee Eastman
Process (TEP) [23, 48] and the Digital Hydraulic Simulator (DHALSIM) [[128]. TEP is a simu-
lation of a chemical process written in C and MATLAB. DHALSIM is a simulation of a water
distribution system written in Python, which can be configured to use different topologies. In

!“Battle of Attack Detection Algorithms” dataset

2«Secure Water Treatment” dataset

3«Water Distribution” dataset
4https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

6

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

prior work and in this thesis, we use C-Town, a default topology that is included with DHAL-
SIM [54, 128]]. For both TEP and DHALSIM, we execute the simulator in normal operation
and record its time-series process values, using this data to train anomaly-detection models. To
generate attack data for TEP, we develop a module that executes pre-defined process-value ma-
nipulations during TEP’s execution. We configure and perform several simulations to collect a
variety of attack data. Our modified simulator is publicly availableﬂ To generate attack data for
C-Town, we use an existing set of DHALSIM configurations from prior work [54]].

2.3 Traditional anomaly detection metrics

Anomalies are rare and accuracy scores may misrepresent the anomaly detection performance.
Much of prior work uses the point-F1 score—the harmonic mean of the precision and recall—to
characterize anomaly-detection performance:

— 2 x prec * rec TP TP
o0init- = reCc = ———— re¢c = ————
b prec + rec P TP + FP TP + FN

TP (true positives) is the number of timesteps during which an attack was correctly detected,

F'P (false positives) is the number of timesteps where an attack was falsely reported, and F'N (false
negatives) is the number of timesteps where an attack is undetected. Although the point-F1 is

commonly used to evaluate ICS anomaly detection, in Chapter 4] we show the shortcomings of

using the point-F1 score to tune and evaluate anomaly detectors and instead propose the use of

range-based metrics.

2.4 Models for process-level ICS anomaly detection

A variety of prior work has designed and applied models for ICS anomaly detection. These mod-
els are unsupervised; they are trained with only benign data that does not contain any anomalies.
In contrast, supervised learning requires explicit data labels (attack or benign). As ICS attack
data is rare and difficult to generalize, unsupervised learning is commonly used.

Instead of anomaly-detection approaches that use network traffic [126]] or information from
computer hosts [28, [79], this thesis focuses on process-level anomaly detection: models are
trained with and predict ICS process values, such as sensor readings and actuator commands.
We define the process values at a given time ¢ as X;. Given a d-by-h sequence of the previous h
process values (X;_p, ..., X;_1) as input, the model can either predict an anomaly score a; [15],
or the model can predict the next expected set of process values X/, which are then compared
with the next true ICS values X, to compute a mean squared error (MSE) [32,1179]. An anomaly
is then declared when the anomaly score or MSE exceeds a predefined threshold. Such anomaly-
detection models include statistical models [[15,189]], linear models [[73, 179, [190]], models based
on deep learning [101}, 109, 171}, 203]], and graph-based models [43, 77, [114].

Shttps://github.com/pwwl/tep-attack-simulator

7

https://github.com/pwwl/tep-attack-simulator

Statistical and linear anomaly-detection models Statistical and linear anomaly-detection
models for ICS include PASAD [15], AR [73, 179]], and GeCo [190]. AR (auto-regressive
modelling) is an approach that trains a reconstruction-based linear model for each feature; AR
predicts each feature value from a linear combination of its historical values [[73]. Prior work
has extended AR by using a stateful, cumulative sum (CUSUM) of prediction errors as a detec-
tion threshold [179]. PASAD trains an embedding into a lower-dimensional subspace for each
feature; to detect anomalies, inputs are projected onto this subspace and the distance from the
subspace centroid is used as an anomaly score [[15]]. A threshold is then set on the anomaly score
using validation data, and inputs that exceed this threshold are declared as anomalous. GeCo
trains a linear model for each ICS process value, by searching over process values and using
only a few features as input [190].

Deep-learning-based anomaly-detection models A variety of deep-learning-based architec-
tures are also used for ICS anomaly detection: these include autoencoders (AE) [[171]], convolu-
tional neural networks (CNN) [101} [102], recurrent neural networks (RNN) [S7,109], and long-
short-term memory networks (LSTM) [[135,203]]. AEs are trained to reconstruct inputs through a
low-dimensional representation, supporting high quality reconstruction of states similar to those
observed during training, and low quality reconstruction of inputs dissimilar to those observed
during training. CNNs are commonly used for image-based tasks [[103, [110] but they can also
be applied over time-series data with one-dimensional convolutional kernels [101]. RNNs and
LSTMs are similar to CNNs but do not require fixed-time-length convolutional kernels; RNN
units are trained over sequences with the ability to update or reset parameters based on time se-
quences [37], whereas LSTM units further include the ability to maintain parameter values over
time [80].

Graph-based anomaly-detection models Graphs can be used for ICS anomaly detection by
training and making predictions with graph neural networks, two prominent examples that have
been applied to ICS anomaly detection are graph decision networks (GDNs [43]) and FuSAG-
Net (FSNs [[77]). Both GDN and FSN perform graph-based convolutions, which require a graph
representation of the relationships between its input features. In the case of ICS anomaly de-
tection which uses sensors and actuator values as features, nodes represent sensors or actuators,
and edges between nodes represent causal relationships between a pair of sensors or actuators.
Prior work that trains GDN and FSN dynamically learns this graph structure from ICS data while
training [43, [77].

In this thesis, I evaluate how effective these models are for detecting ICS anomalies (in
Chapter) and propose improvements to these models for the ICS anomaly detection use case
(in Chapter [6).

2.5 Attribution methods for machine-learning models

Attribution methods compute the influence of a machine-learning model’s input features on their
predictions [6]. In this thesis, we focus on instance-based attributions, which compute a distinct

8

attribution for a single input example. Instance-based attributions depend on the input example’s
feature values, the weights of the model, and the chosen output of interest. Such attribution
methods are further divided into two categories: white-box attribution methods and black-box
attribution methods.

White-box methods White-box attribution methods use gradients computed over model pa-
rameters. Saliency maps (SM) are computed by directly computing the gradient of the output of
interest (e.g., the probability of a specific class) with respect to the input features [156]. Other
white-box attribution methods build on SM by introducing approaches that improve the robust-
ness of the attribution: SmoothGrad (SG) perturbs inputs with random noise [163]], integrated
gradients (IG) compute gradients with respect to a reference baseline [170], and expected gradi-
ents (EG) compute gradients over an expectation of randomly sampled reference baselines [S3]].

Black-box methods Black-box attribution methods do not use model parameters. Instead,
they approximate the behavior of the model around the provided input. This approximation
is built from several model queries drawn from a neighborhood surrounding the input of in-
terest [[71, 119, [139]. Several black-box attribution methods exist and the primary differences
amongst them come from how the model approximation is constructed. For example, LIME uses
the coefficients of a linear regression [139], SHAP uses Shapley values from game theory [119]],
and LEMNA uses the coefficients of a fused Lasso model and a Gaussian mixture model [[71]].

In this thesis, I investigate how attribution methods can be applied to and designed for ICS
anomaly detection. I propose that attribution methods can be used to help identify which compo-
nent in an ICS was manipulated by an adversary, potentially aiding practitioners when responding
to anomalies. I compare existing models (in Chapter[5) and propose improvements to them (in
Chapter[6)) when attributing ICS anomalies.

10

Chapter 3

Related work

In this chapter, I describe related work to this thesis that does not directly serve as the basis
for the new approaches developed in this thesis (unlike the background described in Chapter [2)),
but solves similar problems, makes similar assumptions, and focuses on similar domains. These
related works provide additional context for how the findings of this thesis apply more broadly
to related areas. First, I discuss meta-studies of time-series anomaly detection (Section [3.1)),
which also compare prior work across models, datasets, and metrics. Next, [describe techniques
for explaining the predictions of ML models used for tasks similar to ICS anomaly detection
(Section[3.2). Finally, I describe studies of practitioners who work in contexts similar to ICS
anomaly detection (Section [3.3]).

3.1 Meta-studies of time-series anomaly detection

Much like the work described in Chapter [a variety of prior works compare models and method-
ologies for time-series anomaly detection in general (i.e., not specifically for ICS), identifying
issues with commonly used datasets and metrics.

Identifying issues with datasets Prior works have analyzed popular time-series anomaly-
detection benchmarks and datasets, identifying ways in which these benchmarks deviate from
assumptions in anomaly detection [181, [191]. For example, prior work has found that datasets
commonly suffer from an abnormally high density of anomalies (whereas anomalies are by def-
inition, rare) and ambiguous anomaly labels (e.g., labeling the end time of anomaly at a point
when the data is still anomalous). As a result, evaluations on such datasets can lead to misleading
findings about which models and approaches are most effective.

In this thesis, I make similar observations specifically for the ICS domain. After identify-
ing a lack of anomaly diversity and realism in publicly available ICS datasets (as described in
Chapter 4] and Chapter [5)), I create and release a dataset of newly generated ICS anomalies with
an open-source simulator and use this dataset to better inform our findings in Chapter [5 and
Chapter 6]

11

Identifying issues with metrics Prior works have also identified an over-reliance on point-
based metrics (e.g. point-F1) for time-series anomaly detection tasks [83, [181]], which is also
identified in the work described in Chapter[d] Point-based metrics do not account for factors
such as segment-level coverage or latency, which prior works have identified as important for
time-series anomaly-detection tasks [191,192]]. In response, range-based metrics are commonly
proposed for time-series data [[108, [173]], which introduces additional challenges in properly
tuning such metrics to appropriately capture desired outcomes [65) [160].

In this thesis, I survey prior work specifically in time-series ICS anomaly detection and find
a similar over-reliance on point-based metrics (described in Chapter §). In adopting range-based
metrics, I propose a variety of tunings based on potential objectives for ICS anomaly detection
and show that they lead to different outcomes and findings. I further suggest designing methods
for automatically tuning range-based metrics based on ICS properties as a promising area of
future work.

Questioning the need for deep learning In part because of misleading conclusions from inap-
propriate datasets and metrics, other prior works have found that deep-learning-based ML models
are not necessarily needed for strong performance on many time-series detection tasks [50, 94,
121]. Given the additional costs of gathering training data, determining model hyperparame-
ters, performing model training, and applying methods for explaining these models, smaller and
simpler methods may be preferred to deep-learning-based alternatives.

In this thesis, I take a more specific view that considers the constraints and requirements
of ICS anomaly detection tasks, environments, and practitioners. Ultimately, I draw a similar
conclusion to that from these prior works, particularly in Chapter [Chapter[6] and Chapter 7]
and suggest that approaches that do not require deep-learning models may be more effective and
practical for ICS.

3.2 Explanations in other security-relevant contexts

In this section, I describe methods that propose or use explanations in other security-relevant
contexts, such as explanations of ML models when used for security tasks, fault isolation, and
root-cause analysis.

Explanation methods designed for security-focused ML models Whereas attribution de-
scribes the task of identifying input features responsible for a specific output, explanation more
generally refers to the task of understanding how a model behaves [129]. For example, related
work has designed explanation methods for ML models used for security-relevant tasks: to gen-
erate training data for model fine-tuning [[75]], to automatically detect bias [[87]], and to detect and
explain concept drift [76} [195]. In this thesis, I focus on attribution—I use attribution methods
to identify the manipulated feature in a specific ICS attack. Unlike explanation methods, which
are often evaluated qualitatively [185]], our proposed approach described in Chapter [5| evaluates
attribution methods quantitatively by comparing attribution scores to the ground-truth labels for
which sensors or actuators are manipulated in each ICS attack.

12

Although these explanation methods are designed for general-purpose ML models, they
could be used to improve the performance and practicality of ICS anomaly detection models,
making them more effective. Although this thesis does not focus on explanation methods in gen-
eral, exploring their application to ICS anomaly-detection models would be a promising area of
future work.

Fault isolation Similar to attribution of ICS anomalies, fault isolation involves identifying the
component in a system most responsible for a detected fault. However, unlike attribution, which
performs additional processing based on model predictions and model weights, fault isolation
models predict fault locations directly by encoding these locations as different attack types [63,
201]]. This turns the anomaly-detection task into a classification task [86}147]. As a result, fault
isolation requires an explicit definition of the types of faults expected in the system, which can
be difficult to acquire [188].

In this thesis, rather than explicitly labeling the attack types predicted by the model, I assume
an unsupervised learning setting, with no prior information about anomalies. Thus, fault isolation
methods are not applicable to our setting. Furthermore, I assume that these approaches are
infeasible for larger, complex ICS with a large diversity of components and attacks. Instead, I
focus on using attribution methods which can scale to greater input-feature sizes and a higher
attack diversity.

Root-cause analysis In this thesis, I focus on attributing anomalies to the underlying com-
ponents manipulated by an attacker. To a similar end, root-cause analysis generally involves
determining the underlying cause of one or more cybersecurity events. For example, related
work has developed root-cause-analysis techniques to trace an attacker’s movement throughout
a computer network [28, [78} 79, 189, 190, [194], attribute the actions and intentions of advanced
persistent threats (APTs) [97, 137], or summarize and cluster groups of alarms (3, [11} 92} [148]].

Root-cause analysis is often complementary to attribution; both tasks can help an operator
to fully understand and remediate a cybersecurity incident. However, root-cause analysis often
requires additional context and auxiliary information, which requires additional specification
of the ICS and its computing resources (e.g., IT and OT network configurations, PLC device
configurations). In contrast, attribution methods can be applied and evaluated in the context of
the ML models themselves. Thus, in this thesis, I focus on designing and evaluating attribution
methods for ICS anomaly-detection models while acknowledging the greater potential benefit of
attributions for root-cause analysis.

3.3 User studies of practitioners in contexts similar to ICS
anomaly detection

In contexts similar to the work described in Chapter[7] a variety of related work has studied the
challenges that practitioners face when (i) working with ICS, (ii) using and deploying machine-

learning-based solutions for computer security, and (iii) responding to security alarms in real-
time.

13

Working with ICS Related work studies the security-related perspectives of professionals who
work with the electric power grid [62, [157]. Although the electric power grid is a prevalent
example of an ICS, these works do not focus on real-time anomaly detection and remediation,
instead focusing on how practitioners perceive the severity of attacks and vulnerabilities. Other
related works have studied usability and maintenance challenges in industrial control 24} [161].
These works identify relevant practical and organizational challenges within ICS but are not
focused on their implications on security. In this thesis, I explore challenges similar to those
reported in prior work [24} 162, 157, [161] but focus specifically on how these challenges affect
the adoption of Al for protecting ICS.

Security practitioners’ perceptions of machine-learning-based tools Related work has stud-
ied the perceptions of IT security practitioners, either focusing on their perceptions of a specific
machine-learning-based tool [[131} [133] or by studying their perceptions of machine learning in
general [125] 143]]. These works identify promising uses for machine-learning-based explana-
tions to help practitioners understand security events, but also identify concerns with accuracy,
trust, and usability.

Mink et al. compare rule-based approaches and machine-learning-based approaches, sug-
gesting that they differ in terms of false positives, false negatives, interpretability, and required
domain expertise [125]. Ultimately, they suggest that a hybrid solution that leverages rules and
machine learning is likely required for most tasks to balance tradeoffs. In this thesis, I similarly
explore perceptions of machine learning for security tasks, but focus specifically on machine
learning for securing ICS.

Real-time security alarms in security operations centers Security operations centers (SOCs)
are organizational units that monitor organizations for malicious and potentially harmful activ-
ity in real-time [202]. A variety of related work studies the challenges that SOC operators face
in their day-to-day roles: alarm response [12], alarm ruleset management [180], and organiza-
tional challenges [99]]. Common themes include operator burnout, a high volume of false alarms,
difficulty interpreting alarms, and difficulties when maintaining rule sets.

Although these related works cover various parts of the ICS-anomaly-detection workflow,
none of them are focused on our specific context, in which anomaly-detection systems raise
alarms when ICS are attacked in real-time. SOCs and IT systems operate at high levels of the
Purdue model (i.e., level 4) and do not directly interact with operational technology (OT), such
as PLCs or SCADA. Furthermore, IT and OT professionals exhibit different cultural beliefs
about ICS security [62]]. In this thesis, I explore the alarm-diagnosis workflow and perspectives
specifically for the ICS anomaly-detection context.

14

Chapter 4

Comparing models and techniques used for
detecting ICS anomalies

Several approaches based on machine learning (ML) have been proposed for ICS anomaly de-
tection, including those based on autoencoders [S3, [171], convolutional neural networks [[100}
101}, 102]], and LSTMs [56, 203]. These approaches share many common datasets, yet make
differing conclusions about which architectures are best. Thus, when practitioners are determin-
ing which anomaly-detection approaches to adopt, it is unclear which models and techniques
should be used. In this chapter, we systematize prior work in ICS anomaly detection to examine
why these discrepancies in findings exist, and we determine the models and techniques that are
most effective for ICS anomaly detection. This work described in this chapter is published in
the Proceedings of the 27th European Symposium on Research in Computer Security (ESORICS
2022) [59].

4.1 Introduction

When using a reconstruction-based anomaly-detection approach, practitioners must: (1) select
an ML model architecture (e.g., convolutional neural networks), (2) select hyperparameters for
the model (e.g., the number of hidden layers in the model), (3) collect a sufficient volume of
benign ICS process data, (4) train an ML model to predict expected process values, and (5) tune
detection hyperparameters (e.g., the threshold for an anomaly) to turn process-value predictions
into alarms. Design decisions made in each of these steps play a role in the final performance of
the anomaly-detection model.

Despite the variety of work in ICS anomaly detection, there is no consensus on what solu-
tions are best. Proposed approaches use different ML model architectures (e.g., autoencoders [S3,
171, CNNs [100, [102], LSTMs [56, 203]]), use different datasets [9, 69, [172], and employ dif-
ferent data pre-processing and training techniques. As a result, when one approach is reported
to outperform another, it is not clear what is responsible for the improved performance. In this
work, we perform a comprehensive, empirical evaluation of techniques across datasets com-
monly used in reconstruction-based ICS anomaly detection. Perhaps surprisingly, we find that
the best performance can be achieved by most models, including models that are far smaller (i.e.,

15

‘ 1. Select Model Architecture + Hyperparameters ‘

System . .
State | Xen || Xz || X || X Train Unsupervised

- X
History o Model

-2
ﬂ Benign Dataset

Observed

s dxh 2. Select Tuning Metric
ensors
el
Actuators Evaluate Detection
Hyperparameters (t,w)
Attack Validation Dataset

e Reconstruction Errors 3. Select Optimal Values for Detection

Hyperparameters

1
E Z HXprmI -)([,7'110,“2 >T

E Evaluate on Test
Predicted 9 ﬂ Dataset

Final Test Dataset

Sensors
and {DDDDDD DDD% ‘ 4. Report Final Score
Actuators

(a) Anomaly detection process (b) Model optimization pipeline

Figure 4.1: The anomaly-detection process is shown on the left: a sequence of system states is reconstructed by
an ML model, and high reconstruction errors are used to identify anomalies. The optimization pipeline for the
anomaly-detection process is shown on the right, with each optimization step and its relevant datasets.

contain fewer parameters) than the previously reported best models. We also identify training
and data pre-processing techniques that strongly affect the results of reconstruction-based ICS
anomaly detection, but are not used consistently across prior work.

Another important design consideration is the choice of metric used to tune and evaluate
anomaly-detection models [107, [191]. Typically, prior work equally penalizes false positives
and false negatives with the point-F1 score computed on a per-timestep basis [[164]. However,
since ICS attacks take place over a sequence of timesteps [9,69] and timely detection of attacks is
important [83]], ICS anomaly-detection models should be evaluated over temporal ranges. Unlike
point-F1, range-based metrics score detection performance on temporal ranges and can express
tradeoffs between increased detection rates, reduced false-alarm rates, and lowered detection
latency [83, 1108, [173]]. When used to tune ICS anomaly-detection models, range-based metrics
produce models that perform better on metric-specific tradeoffs. We also show that using range-
based metrics to evaluate anomaly-detection models gives a better understanding of what models
are optimal.

4.2 Describing the reconstruction-based ICS anomaly detec-
tion process

An anomaly detector reconstructs ICS system states to determine if an anomaly is occurring.
Figure d.1a] outlines this process First, system states X over the previous h timesteps are col-

! Autoencoders are a special case since they do not consider a sequence of states (h = 0), and instead recon-
struct the current state X.

16

lected from observed network traffic, up to the current timestep ¢. Second, the trained ML model
is provided the system state sequence ()Z't_ s)Z't_ Btls e)Et) and predicts the next system state
X' ++1. Third, the predicted and observed states are compared, and the reconstruction error ¢é; is
computed through the mean-squared-error (MSE): ¢; = H)?t’ —)?tHz. Lastly, the prediction y; is
calculated over a sequence of reconstruction errors (€, €1, ..., €;): y; = 1 when the reconstruc-
t+w
tion error exceeds a threshold 7 for w consecutive timesteps: y; =]t[I(é; > 7). The threshold 7
is determined using the distribution of benign-validation errors. F(;r texample, T can be set to the
distribution’s 99.5-th percentile value. Both 7 and the window length w are detection hyperpa-
rameters: they are independent of the underlying trained ML model and convert the system state
reconstruction to attack predictions. We show that detection hyperparameter tuning is closely
affected by the choice of metric, and optimal models often change when different metrics are
used.

End-to-end, to optimize reconstruction-based anomaly detection, (1) we train a ML model
to minimize MSE and (2) we tune its detection hyperparameters to maximize its performance
according to a chosen metric. Figure[d.Tb| shows the steps and datasets used in optimization.
Most prior work focuses on selecting the best model architecture and best model hyperparameters
(step 1), but in this work we show that optimization across both steps plays a substantial role in
the effectiveness of reconstruction-based ICS anomaly detection.

In this work, we independently evaluate both steps. In Section[4.4] we keep the choice of
tuning metric (point-F1) constant and compare the performance across various ML model archi-
tectures and hyperparameters from prior work, In Sectiond.5] we keep the underlying trained
model constant and compare how the choice of tuning metric affects detection hyperparameter
tuning. Lastly, in Section 4.5.4] we show how the choice of tuning metric affects both the optimal
model hyperparameters and detection hyperparameters in an end-to-end optimization.

4.3 Comparing methodologies from prior work

In this section, we overview the prior work in ICS anomaly detection across BATADAL,
SWaT, and WADI—three commonly used ICS datasets.

4.3.1 Comparing models, hyperparameters, and metrics

We first compare the models and model hyperparameters used in prior work. Table [@.1] shows,
for each prior work, the details of the ML model architecture, suggested optimal model hyperpa-
rameters, and metrics used for tuning and evaluation.

We identify two gaps across the state of the art. First, although some prior work compares MLL
model architectures [2,, 53] [102], none covers the full selection of model architectures, datasets,
and pre-processing techniques, making it is unclear what approaches are optimal across all set-
tings.

Second, models are commonly tuned with the point-F1 (or not tuned at all), which ignores the
temporal aspect of time-series detection, and does not balance the trade-offs between precision,

17

Table 4.1: ML model architectures, datasets, and metrics from prior ICS anomaly-detection work. Range-based
metrics are shown in bold. (CM = confusion matrix; TPR/FPR = true/false positive rate; TNR = true negative rate;
Coverage = percentage of detection overlap; Norm-TPR = normalized true positive rate.)

. Datasets Tuning Evaluation

Model Details B S W Metric Metric(s) Source
Precision, Recall

AE: 3-layers e o o FPR Point-F1 [102]]
Precision, Recall

AE: 4-layers] None Point-F1, Numenta [149]

AE: 5.1 ° Point-F1 Precision, Recall (71
: 5-layers oint- Point-F1
Precision, Recall

AE: 5-layers]] None Accuracy, Point-F1 53]

CNN: 8-layers, 32 filters o Range-F1 Range-F1 [100]

CNN: 8-layers, 32 filters ® @ @ FPR Precision, Recall 175,
Point-F1
. TPR, Norm-TPR

LSTM: 2-layers, 256 units e O None FPR. Atk TP [56]
. . Precision, Recall

LSTM: 3-layers, 100 units] Point-F1 Point-F1 [185]]

LSTM: 3-layers, 100 units] None Atk TP, Atk FP [68]

LSTM: 4-layers, 64 units o None Atk TP, Atk FP [95]]

LSTM: 4-layers, 512 units] None CM, Point-F1, Atk TP [135]

LSTM: 4-layers, 512 units o Point-F1 Point-F1 [203]]

1-class SVM] Point-F1 Point-F1 [185]]

DNN: 3-layer [J None CM, TPR, TNR 4]
Custom wide Precision, Recall

and deep CNN ¢ o None Point-FI, Atk TP 12
. Precision, Recall

GAN e O Point-F1 Point.F1 (11
. Atk FP, Atk TP

Bayesian Network [J None FP length, Coverage (114

recall, and latency in anomaly detection. Across this prior work, only one tunes with a range-
based metric [100]]; although some prior work considers ranges in evaluation, most only remark
on the number of attacks detected or missed and only four evaluate with a range-based metric [56,
100, [114,149]. In Section [4.5] we show that tuning with range-based metrics results in different
selections of optimal hyperparameters and different conclusions about which models perform
better than others.

18

Table 4.2: Identifying key pre-processing and model training techniques from prior ICS anomaly-detection work.
‘@, ‘0, and ‘O’ indicate if the technique was used, partially used, or not used respectively. ‘?” indicates that we
could not determine if the technique was used.

Feature Selection Attack Cleaning Benign Data Shuffling Early Stopping Source

O O ? O 2]
O O ° O]
O ® ? ° 53]
O O O O 156]
© © ? ° 168]
O ° O ° 183]
O ° ® O [93]
O © ? ° [101]
° O ? O [100]
© O O O [T1T]
O ° O O [14]
° ° O O [135]
O O O O [149]
O ® ? ° [171]
° © ? O [203]

4.3.2 Comparing training and data-processing techniques

We also compare prior work by their training and data-processing techniques. In this work,
we identified four techniques that enhance the quality and reproducibility of anomaly detection
performance: (i) selecting features, (ii) shuffling benign data, (ii1) cleaning attack start and end
times, and (iv) early stopping while training. These techniques are necessary to fairly compare
anomaly-detection approaches, as they improve the quality and consistency of anomaly-detection
results. Table shows, for each prior work, which key techniques are used.

Finding 1: Techniques such as benign data shuffling, attack cleaning, feature selection,
and early stopping increase the quality and reproducability of results, but are applied in-
consistently in prior work.

Key Technique #1: Feature selection. In WADI and SWaT, some benign-labeled test data
appears significantly different from benign-labeled training data [102, [175]. To address this
problem, statistical tests are used to select features for the ML model. Prior work used a mod-
ified version of the Kolmogorov-Smirnov test (called K-S*) [102] to identify features with a
significant difference between their training and test distributions. 11 features are removed from
SWaT, and 10 features are removed from WADI, which matches the proportion of features re-
moved from these datasets in prior work [[102]]. We found that feature selection is only effective
on the SWaT dataset, so we only use feature selection for SWaT.

19

—— Model 1 Model 2 —— Model 3

e
wn

Training Loss Validation Loss « 1layer
2 layers
3 layers
4 layers
5 layers
Early stop (avg)

I
IS

1.3

1.2

©
W
.

1.1

©
[N}
.

1.0

Z:: M | —_—

0 20 40 60 80 100 O 20 40 60 80 100 0.0 4 8 16 32 64 128 256
Epochs Epochs CNN Units Per Layer

Overfit Amount

=]
-

(a) Comparing losses for a 4-layer, 64-unit CNN. (b) Overfit by model size.

Figure 4.2: On left (a): the training and validation loss for a 4-layer, 64-unit CNN, across random seeds. On right
(b): the average overfit amount without early stopping, shown for all CNN sizes, compared to the average overfit
amount for all layers with early stopping.

Key Technique #2: Attack cleaning. Some attacks in the SWaT dataset do not execute as
described [185)195]]: although labelled as attacks, the SWaT description [69] notes that they did not
actually perform as intended. These cases should not be evaluated as attacks, yet the majority of
prior work does. We recommend removing the benign “attacks” from the dataset. Furthermore,
other prior work has noted that the start and end times of attacks in SWaT are incorrect [203]].
Hence, we recommend that the times of the labelled attacks be corrected [

Key Technique #3: Benign data shuffling. When most prior work divides the benign dataset
into training and validation portions, it divides by a fixed time [56] or does not describe how the
division is performed. Since system behavior can differ between days (e.g., if the final 30% of
timesteps in SWaT are used for validation, the distributions of the training and validation datasets
are significantly different), splitting should be random across the benign dataset. For CNNs and
LSTMs, each timestep’s history should be collected before splitting.

Key Technique #4: Early stopping. When early stopping is not used, models overfit quickly
and tend to diverge. We train a 4-layer, 64-unit CNN with a history length of 50, repeated three
times across random seeds; the model hyperparameters, data ordering, and training parameters
are all unchanged. Figure[4.2a] shows the training and validation losses for 100 epochs. When
early stopping is not used, the models overfit (validation loss plateaus after the 6th epoch and
begins to increase afterward) and diverge after 10-20 epochs; this happens across all model
architectures, model hyperparameters, and datasets. Across CNN sizes, Figure [d.2b| compares
the final training and validation loss difference (overfit amount) with and without early stopping,
averaged across three random seeds. With early stopping, the overfit amount is small for all
model sizes. Without early stopping, larger models overfit more.

Although some prior works evaluate multiple ML model architectures [2, 101, 203]], no work
covers the full selection of model architectures, datasets, and pre-processing techniques, making

2The recommended SWaT corrections can be found at https://github.com/pwwl/ics—anomaly-d
etectionl

20

https://github.com/pwwl/ics-anomaly-detection
https://github.com/pwwl/ics-anomaly-detection

it is unclear what approaches are optimal across all settings. We therefore establish a standardized
evaluation of three model architectures (AE, CNN, LSTMs) across three datasets (BATADAL,
SWaT, and WADI) using all four key techniques. We perform a comprehensive comparison of
models proposed in prior work to determine which models are most effective for ICS anomaly
detection.

4.4 Comparing ML model architectures and datasets for ICS
anomaly detection

In this section, we report on a comprehensive comparison of model architectures and model
hyperparameter values, evaluating across techniques proposed in prior work. For each model
hyperparameter setting, we optimize the anomaly-detection system through the steps shown
in Figured.Tbl We explain our experimental setup in Section4.4.1] and present our findings
in Section

4.4.1 Experiment setup

Data Pre-processing. Before training and evaluating each model, each feature is normalized;
the scaling transformation is saved and applied to the attack dataset before evaluating the model.
70% of the training dataset is randomly chosen for training the ML model. The other 30%,
referred to as the benign validation dataset, is used to give an unbiased score during training; we
use the benign-validation loss as an indicator for early stopping to prevent overfitting.

In Sectiond.3.2] we described techniques that impact the quality and reproducibility of re-
sults but were used inconsistently in prior work. Thus we use the described techniques in our
evaluation: data pre-processing through feature selection, benign data shuffling, attack cleaning,
and early stopping, as they improve the quality and consistency of anomaly-detection results.

Model Hyperparameter Tuning. We perform a hyperparameter search for three ML model
architectures: autoencoders, CNNs, and LSTMs. For autoencoders, we vary the number of
hidden layers in the encoder and decoder from 1 to 5 (by 1) and the compression factor from
1.5 to 4.0 (by 0.5). For CNNs, we vary the number of layers from 1 to 5 (by 1), and vary
the number of units per layer from 4 to 256 (by a factor of 2). The kernel size is fixed at 3
and we use history lengths of 50, 100, or 200 timesteps. For LSTMs, we vary the number of
layers from 1 to 4 (by 1), the number of units per layer from 4 to 128 (by a factor of 2), and
use history lengths of 50 or 100 timesteps. Each model was implemented in Tensorflow 1.14.0
using the t £.keras API and trained with the Adam optimizer using its default parameters:
{lr = 0.001,8;, = 0.9,5, = 0.999}. We use a batch size of 512 samples during training
and train each model for up to 100 epochs. We apply early stopping while training through
the tf.keras.callbacks.EarlyStopping callback class, with patience=3 (which
terminates training if validation loss does not improve over 3 consecutive epochs). Across our
trained models, we found that early stopping was always applied within the first 20 epochs: a
finding that is consistent with prior work [85].

21

Point-F1 BATADAL Point-F1 SWaT Point-F1 WADI

FMPC'19 [8]
LSTM{ [] oam - ® - a»

KS'18 [18]
NN — T - @ | - ofp

TG'18 [32]

AEH oam @+ |00 . o @+ | @—[[

0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00

Figure 4.3: The final point-F1 scores of each model when trained and tuned on three experimental ICS datasets.
For each dataset, a model hyperparameter setting from prior work is included for comparison. When using the
point-F1, the performance of AEs vary greatly, and most LSTM and CNN configurations perform similarly.

Detection Hyperparameter Tuning. After the model is trained, we determine the optimal detec-
tion hyperparameters using 30% of the attack dataset, referred to as the attack validation dataset.
To simulate a setting with unseen attacks, when dividing the attack dataset into validation and
testing portions, we divide the dataset into two continuous sequencesE] To find optimal detection
hyperparameter values, we perform a parameter search, based on a chosen tuning metric, over the
following ranges: 7-percentile € [0.95,0.99995], w € [1, 100]. We report the final performance
on the remaining 70% of the attack dataset for a chosen evaluation metric. We use the point-F1
score as both the tuning metric and evaluation metric, which Table shows is commonly used
in prior work.

4.4.2 Optimization results

Figure 4.3 shows the final point-F1 scores for each model hyperparameter setting, for each ML
model architecture and dataset. We perform a full optimization three times over different random
seeds for CNNs and LSTMs. For autoencoders, we observed a higher variance in the resulting
point-F1 scores and thus repeat this process five times. Furthermore, we train three selected
models from prior work with the same methodology. We include a 5-layer autoencoder [[171], an
8-layer, 32-unit CNN with a history of 200 [100], and a 2-layer, 256-unit LSTM with a history
of 50 [S6]]. Figure 4.3|includes the point-F1 scores for these three models.

We find that larger models (CNNs and LSTMs) performed poorly on the BATADAL dataset.
We attribute the poor performance to the relatively small size of the BATADAL dataset (only
~48,000 datapoints, compared to ~500,000 in SWaT and ~1,000,000 in WADI); in our surveyed
prior work, only one work trains a CNN or LSTM on BATADAL [102]. In Section we find
that using a range-based evaluation metric shows CNNs and LSTMs for BATADAL in a different
light, providing another example where the point-F1 may be misleading. For the SWaT and

3We use the first 30% of the SWaT and WADI test datasets as their corresponding attack validation datasets.

We use the final 30% of the BATADAL test dataset as its corresponding attack validation dataset, since the first
30% of the BATADAL test dataset does not contain any attacks.

22

WADI datasets, we find that almost all model hyperparameter settings provide similarly strong
performance: a 1-layer, 4-unit CNN or LSTM produces a similar point-F1 score to CNNs and
LSTMs with more layers and units, including the optimal models from prior work [56} 100} 171].

Finding 2: Substantially smaller models can achieve similar point-F1 scores as the sug-
gested model sizes from prior work.

Prior work noted that the performance of trained models differed between runs [100], even
under the same model hyperparameter settings. We found that when early stopping and benign
data shuffling are used, the results for CNNs and LSTMs are more consistent: across random
seeds, the final point-F1 scores always differ by less than 0.05 (and less than 0.01 for a vast
majority of cases). There is a higher variance across autoencoder hyperparameters, with some
models achieving far higher scores than others. This is likely because the autoencoder is trained
to reconstruct independent timesteps and does not consider temporal effects, rendering the per-
formance of autoencoders unstable.

In conclusion, although prior work performs model hyperparameter searches and claims to
find the optimal models for ICS anomaly detection, our experiments show that equivalent results
can be achieved over a range of ML model architectures and hyperparameters when using the
point-F1 score. In Section4.3.3] we show that tuning models with range-based metrics can
produce outcomes that more meaningfully address ICS anomaly-detection objectives.

Finding 3: Although prior work focuses on optimizing the choice of ML model architec-
ture and hyperparameters, equivalent performance can be achieved by several ML model
architectures and over a wide range of model hyperparameters.

4.5 Tuning and evaluating with range-based metrics

In this section, we first describe, in Section[4.5.1] the shortcomings of point-F1, which is com-
monly used by prior work in ICS anomaly detection. We introduce range-based metrics in
Section[4.5.2l In Section[4.5.3] we show how range-based metrics affect detection hyperpa-
rameter tuning and in Section we show how they affect what ML model architectures and
hyperparameters are optimal.

4.5.1 Issues with the point-F1 score

ICS detection performance is poorly captured by the point-F1 for several reasons. (1) The point-
F1 score weighs false positives and false negatives equally, whereas the cost of each may not be
equal for a given ICS. (2) The point-F1 score places more importance on longer attacks [83]. A
high point-F1 score can be achieved even if several short attacks are undetected; these attacks
may be equally or even more harmful than attacks with a longer duration. (3) When an attack
occurs over a long period of time, it may not be important to detect every timestep as anomalous;
once a prediction is made, corrective actions will be taken, and the existence of any correct

23

Case #1: point-F1 = 0.75 Case #2: point-F1 = 0.75
range-F1 =1 range-F1 = 0.17

Attack

Prediction | | | | | I [| | | | '
0 0

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Time Time

Figure 4.4: Two detection examples: in each case, the x-axis represents time and the y-axis shows attacks (top,
red) and attack predictions (bottom, grey). In the example on the left (case 1), all attacks are detected with no false
positives, while in the example on the right (case 2) only one attack is detected, with five false positives; yet, the
point-F1 scores are the same.

prediction within the attack may be sufficient. (4) The point-F1 score does not consider when in
the attack the detection occurs [[108]]. In reality, if an attack is only detected as it ends, harm may
already have been caused to the ICS, rendering the detection unhelpful.

We illustrate some of these deficiencies of point-F1 using two examples of detection perfor-
mance in Figure d.4] The true attack sequence is shown in red: six attacks of varying length are
executed in sequence. In case 1 (left), the first five attacks are all detected perfectly, and approx-
imately half of the last attack is detected. In case 2 (right), the first five attacks are completely
missed, 5 false alarms occur, and the last attack is detected perfectly. When using the point-F1
score, the two examples misleadingly result in equal detection success: the point-F1 for both is
0.75. For many practical applications, however, case 1 shows a detection system that works well,
and case 2 a detection system that works poorly. To address the shortcomings of point-F1, prior
work proposes metrics better suited to time-series detection tasks [83),[108,[173]. We define these
metrics in Section 4.5.2] and evaluate their implications in Sections

Finding 4: The point-F1 score gives a misleading sense of performance for many time-
series-based detection tasks.

4.5.2 Range-based performance metrics

In this section, we provide examples of range-based metrics that could be used for tuning and
evaluating anomaly-detection performance. In Sections 4.5.3H4.5.4] we show the effect of these
metrics on our understanding of what models are best. We describe two types of range-based
metrics: (1) range-F/3 metrics, which we define based on a prior framework for range-based
metrics [[173] and (2) the Numenta anomaly score [108], a metric from prior work.

Defining the range-based setting Given sequences of binary labels (y; € {0, 1}) and predicted
labels (y; € {0,1}), we convert these sequences to ranges. Let (yo,y1,-..,y;) be represented
as R = {Ry, Ry, ..., Ry}, where each range R; represents a continuous sequence of positive
(y: = 1) labels. We express the predictions (y(, vy, ...,¥;) in the same way to produce R’ =
{R}, R, ..., R }. If no predictions or anomalies exist (V¢ : y; = 0), then R = ().

24

Range-F1 and Range-F [acores Prior work has defined a general range-based metric frame-
work that combines existence rewards (whether any intersection exists) and overlap rewards (the
size of the intersection) when scoring a time-series prediction [173]. When demonstrating the
impact of range-based metrics on the understanding of ICS anomaly detection, we assume that
any alarm raised by the anomaly-detection system leads to investigation, so we only consider ex-
istence rewards and leave exploring overlap rewards to future work. For our existence reward, we
count any overlap between a true attack R; and the entire predicted range R’ as a true detection.
Using this notion, the range-based recall and precision are calculated as follows:

S IsTP(R;)
R
B > IsTP(R;)
Y ¥ IsTP(R;) + 3. IsFP(R))

IsTP(R;) =1[|R;NR'| > 1] R-rec =

IsFP(R}) =I[|RN R}| == 0] R-prec

The FfS score is a generalized version of the F1 score that scores precision with a relative
weight of 8. [> 1 indicates that precision is more important, whereas 5 < 1 indicates that
recall is more important. We define the range-F1 and range-F[3 score in the same fashion as the
point-F1:

R-F1 =

2 x R-prec x R-rec RFf = (1 + %) x R-prec x R-rec
R-prec + R-rec (2% R-prec) + R-rec

Numenta anomaly score [108] When using the Numenta anomaly score, each attack is rep-
resented by an inverted sigmoid function, plotted with its origin at the earliest true prediction.
This (1) benefits earlier predictions within an anomaly and (2) assigns a small positive score to
when detection is made shortly after the anomaly ends. In the original proposed Numenta score,
both the position and width of the sigmoid were fixed; we use recommendations from follow-up
work [160] for tuning. The Numenta score is adjusted by the position of the sigmoid function:
an earlier placement in the anomaly assigns a lower score to late detection and penalizes false
positives that occur shortly after the anomaly ends. « controls the width of the sigmoid function:
lower values of « cause the function to be flatter, making the scoring more lenient towards late
detection and false positives.

Parameterizing range-based metrics for ICS objectives Each range-based metric requires
parameterization to contextualize their scoring. We describe the default setting for each range-
based metric and provide three additional example settings for them, each prioritizing a different
ICS objective.

By default, the range-F1 score as defined in Section 4.5.2] places equal importance on reduc-
ing false positives and reducing false negatives. If an example use case requires a high detection
rate, we optimize for a higher recall by using the F3 score with 3 = 1/3 (range-Ff3;.3), such that
recall is three times more important than precision. An alternate use case for a highly critical
ICS may require that no false alarms occur. For this use case, we use the Fj3 score with § = 3
(range-Ff3.1), which weighs precision three times more heavily than recall.

25

Table 4.3: For each optimal model proposed in prior work, we use a different tuning metric to select the optimal
detection hyperparameters and show the resulting number of false alarms, detected attacks, and 7'P: F'P ratio.
Using range-F1 always outperforms its point-F1 counterpart in T'P: FP ratio.

Dataset Tuning False Detected TP:FP
and Architecture Metric Alarms Attacks Ratio
BATADAL AE Point-F1 11 4/4 0.36
Range-F1 1 4/4 4.00

WADI LSTM Point-F1 143 10/13 0.07
Range-F1 63 7/13 0.11

Point-F1 32 6/18 0.19

Range-F1 4 4/18 1.00

SWaT CNN range-Ff3.1 0 3/18 00
range-F (1.3 47 7/18 0.15

NA-early 89 7 ;;r/llyi 0.12

The default configuration of the Numenta anomaly score sets x = 5 and positions the sigmoid
at the 50% point of each labeled anomaly [108]. We propose an additional ICS objective that
requires early attack detection, as harm may be caused to the ICS even before the attack is
completed. We optimize for early detection by re-positioning the Numenta sigmoid to the 25%
point of an anomaly, reducing the false positive cost by 50%, and setting x = 10, producing a
stricter decision boundary. We call this metric NA-early. With NA-early, a detection in the last
75% of an attack is considered to be late and is penalized as a missed attack, as we assume that
the ICS has already been damaged.

4.5.3 Using range-based metrics to tune detection hyperparameters

In contrast to Section[d.4] where we selected optimal model hyperparameters, in this section
we select optimal detection hyperparameters for a fixed ML model. In doing so, we reveal
whether using tuning metrics other than the point-F1 leads to a different selection of detection
hyperparameters and to markedly different anomaly-detection performance, which may lead to
a changed understanding of which models are best or whether any are adequate for a particular
deployment. For each ML model architecture, we again use the optimal model hyperparameters
declared in prior work: a 8-layer, 32-unit CNN trained on SWaT [[100], a 5-layer, 2-compression
AE trained on BATADAL [171]], and a 2-layer, 256-unit LSTM trained on WADI [56].

We compare the detection outputs when using the point-F1 and the range-F1 and show the
number of detected attacks, false alarms, and ratio of true positives to false positives (7P: FP ra-
tio) in Table[4.3] Prior work hypothesized that a 7'P: F'P ratio of 1 or greater was acceptable and
used the T'P:F'P ratio as a success metric [56]. For all three optimal models from prior work,
using the range-F1 selects different detection hyperparameter values than using the point-F1. For
BATADAL and SWaT, using the point-F1 for detection hyperparameter tuning results in an un-
acceptable model (7'P:F'P ratio < 1), whereas using the range-F1 for detection hyperparameter
tuning results in an acceptable model (7P: F'P ratio > 1).

Using range-based metrics in tuning can achieve outcomes beyond an improved 7'P: F'P ratio.

26

Range-F1 BATADAL Range-F1 SWaT Range-F1 WADI

FMPC'19 [8]

LSTM' o B) o] J Y
KS'18 [18]

CNN{o HoO T | e 1 4

TG'18 [32]
AE - 0 000 1 HE = 1 — [} amw

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 4.5: The final range-F1 scores of each model when trained and tuned on three experimental ICS datasets.
For each dataset, a selected model hyperparameter setting from prior work is included for comparison.

Table [4.3] shows the final detection results for our additional metrics (defined in Section 4.5.2)
after tuning the SWaT CNN from prior work [[100]. To detect more attacks, we tune with range-
F/31.5. The resulting tuning detects more attacks (7/18) than prior tunings, at the cost of more false
alarms (47). Conversely, to detect attacks with absolutely no false alarms, the range-F/35.; tuning
can be used; fewer attacks (3/18) are detected but no false alarms occur. Both tunings outperform
their point-F1 or range-F1 counterparts on the chosen objectives.

Lastly, we use NA-early to optimize for an ICS where only early detections (within the first
25% of the attack) are useful. The original point-F1 tuning produces 32 false alarms and detects
six attacks, five of which are detected early. With NA-early, the total number of false alarms (89)
and attacks detected (11/18) increase, but seven attacks are detected early, which outperforms
the general tuning selected by the point-F1.

Given the various ICS trade-offs and use cases, a universally optimal strategy for hyper-
parameter tuning cannot exist, and we do not advocate for specific metrics or hyperparameter
values. Rather, we show that when tuning with range-based metrics, it is possible to produce
anomaly-detection systems that better match defined ICS objectives.

Finding S: By using objective-driven range-based metrics to tune detection hyperparam-
eters, the resulting anomaly detection systems can better address the defined objectives
than their point-F1-tuned counterparts.

4.5.4 Using range-based metrics to select model hyperparameters

In this section, we revisit model hyperparameter selection and show how range-based metrics
alter the findings from Section4.4l Compared to the point-F1, using a range-based metric for
tuning and evaluation consistently leads to different conclusions about which models are opti-
mal. Figure 4.5 shows the final range-F1 scores after repeating the experiments described in
Section4.4.2L we train each ML model architecture under each model hyperparameter setting
and tune the detection hyperparameters with the range-F1.

27

Across model hyperparameters, CNNs/LSTMs on SWaT/WADI perform similarly regardless
of whether range-F1 or point-F1 is used in tuning: the difference in range-F1 (or point-F1) be-
tween model hyperparameter choices is small, and the best performance can be achieved over
a wide range of model hyperparameters. The results on BATADAL are different from those
computed by tuning with point-F1 (Section4.4.2)): Despite far lower point-F1 scores, over 25%
of CNNs produce a range-F1 of 1, detecting all attacks without a single false alarm! Range-
F1-optimal LSTMs for BATADAL yield similar results: the best models detect two out of four
attacks with no false positives (perfect segment precision, 50% segment recall) and exhibit a high
range-F1, but point-F1 scores below 0.2. In summary, previous experiments indicated that au-
toencoders were best for BATADAL but no model performed particularly well; using the range-
F1 still reveals that autoencoders are on average, the best, but that all models perform quite well.
When the combination of ML model architecture and dataset is held constant, the selected model
hyperparameters always differ between the range-based metric tuning (range-F1, range-F/ or
NA-early) and the point-F1 tuning, changing our understanding of what models are optimal.

Finding 6: When using range-based metrics to optimize reconstruction-based ICS
anomaly detection, the selected ML model architectures and hyperparameters are typi-
cally different from what would be selected when using point-F1; this often changes the
understanding of what model performs best by a substantial margin.

In summary, we show that using range-based metrics to tune and evaluate ICS anomaly-
detection models (i) selects different outcomes compared to when using the point-F1 and (ii)
better addresses objectives relevant to ICS anomaly detection. We evaluated these claims across
three ICS datasets and note that these datasets may not encompass the wide range of ICS behav-
ior. Extending our analysis to other datasets remains future work.

4.6 Summary

In this chapter, we determine what factors (e.g., the choice of model, training techniques, met-
rics, etc.) are most important when training ICS deep-learning-based anomaly-detection models.
Contrary to what is suggested by prior work, we find that the choice of deep-learning model
does not have a strong effect on anomaly-detection performance; the best performance can be
achieved over a range of model architectures and hyperparameters. Instead, we used range-based
metrics to optimize ICS anomaly detection and found that they lead to different and potentially
more useful outcomes than the common approach of relying on the point-F1 score. Ultimately,
we found that effective anomaly detection extends beyond optimizing for the point-F1, and better
success measures are needed to practically tune and evaluate ICS anomaly-detection models.

28

Chapter 5

Evaluating attributions for ICS anomaly
detection

A detected ICS anomaly requires follow-up diagnosis and remediation. In this chapter, we in-
vestigate if and how outputs from the anomaly-detection model can be used to assist with alarm
remediation. We evaluate if attributions of anomalies detected by anomaly-detection models
can be used to identify the manipulated component in an ICS attack. We first evaluate if prior
approaches are sufficient for attribution, before performing a broader evaluation across anomaly-
detection models, attribution methods, and ICS attack properties. We identify factors that affect
attribution performance and make recommendations that make attributions more effective for
ICS. The work described in this chapter is published in the Proceedings of the 31st Network and
Distributed System Security Symposium (NDSS 2024) [60].

5.1 Introduction

In Chapter 4] we described our evaluation of a variety of anomaly-detection models for ICS. Each
of these models is reconstruction-based: they predict a set of ICS values and detect anomalies by
comparing these predictions to their observed values. In this chapter, we investigate if outputs
from anomaly-detection models can be used to attribute the causes of anomalies by identifying
the component (i.e., the sensor or actuator) that was manipulated in an ICS attack.

We first investigate if, as suggested in prior work in small-scale evaluations [82, [101], per-
feature error ranking can be used for attribution. We expand on prior evaluations by evaluating
with over 150 diverse attacks; this work is the first to systematically evaluate attributions for
ICS anomalies. After finding that raw-error ranking fails to generalize across a more diverse
set of attacks, we investigate if machine-learning-based attribution methods proposed in prior
work [55) 71, [119, [139} 156 163}, [170] can be used to effectively attribute ICS anomalies. At-
tribution methods are predominately designed for and evaluated on image classification, so we
must first adapt these methods for the ICS anomaly-detection domain.

Attacks in ICS datasets vary in how they are performed, such as the manipulation magnitude
and the type of component that is attacked. We perform a statistical analysis of attribution ac-
curacy across these factors to identify which attribution methods perform best for specific types

29

[Inputs/outputs
[Processes

Manipulate
feature
Raw-output . . .
rankings Industrial ICS process Anomaly Per-feature Weighted Ranking of
(baseline) control system values detection anomaly score averaging features

< Attacker process

J

Attribution
methods

Per-feature
attributions

Attribution method

Figure 5.1: In this work, we describe and evaluate each step when attributing an ICS attack. Raw-output rankings
(top) are the baseline method from prior work. We introduce ML-based attribution methods (bottom) as an alterna-
tive. We average and sort attribution scores to produce an overall ranking of suggested features for investigation.

of attacks. Since we find that different methods perform best for different types of attacks, we
ultimately design an ensemble of attribution methods and show that it outperforms all other in-
dividual attribution methods.

5.2 Methodology

In this section, we describe our methodology, which is composed of several steps; Figure [5.1]
shows our overall methodology in detecting and attributing ICS anomalies.

First, we prepare anomalous data for evaluating anomaly detection and attribution. Section [5.2.1]
describes the datasets used in our work, spanning both publicly collected and newly generated
datasets. Second, we train ICS anomaly-detection models, closely following techniques from
prior work, as described in Section5.2.2] Third, we compute attributions of anomalies, us-
ing baseline methods from prior work (raw-error ranking) and ML-based attribution methods;
Section[5.2.3] describes how we adapt attribution methods to account for the time-series and un-
supervised aspects of ICS anomaly detection. Finally, we sort, score, and average attributions
to produce an overall ranking of features for investigation; Section describes AvgRank, our
evaluation metric that captures attribution accuracy over a broad set of anomalies.

5.2.1 Datasets used for training and evaluation

We evaluate against two groups of anomalies: (1) real attacks found in public ICS datasets [9,169]]
and (2) synthetic anomalies created with an open-source ICS simulator [23]].

Real attacks

In this work, we use SWaT [69] and WADI [9]], as they are commonly used for training deep-
learning-based anomaly-detection models [43,159,101}135,1203]]. In the respective attack datasets
of SWaT and WADI, each attack is performed by the system operator: the value of one or more
sensors or actuators is manipulated for a fixed duration while the response from the physical ICS

30

is captured. Each attack’s start time, end time, and location (which sensors/actuators are manip-
ulated) are documented. In total, the SWaT and WADI datasets contain 47 attacks for testing:
32 in SWaT and 15 in WADI. These datasets also contain anomalies where multiple features are
manipulated simultaneously; when evaluating attributions, we consider each manipulation inde-
pendently. Across the 47 attacks in our datasets, 67 manipulations (43 in SWaT, 24 in WADI)
are performed, forming the set of real attacks.

Synthetic anomalies

To further increase anomaly diversity for our attribution evaluation, we created an additional
dataset of anomalies by modifying a simulated ICS. We use a public MATLAB 7.0 simulator of
the Tennessee Eastman process (TEP) [23]], an anonymized chemical process [48].

We implement a MATLAB module that interfaces with the TEP simulation and manipulates
process values, based on an attacker model used in prior work [32},[104]: for a feature j, a benign
sequence ;(t) is replaced with a manipulated sequence z’;(t) for a time period 75,.

(1) — {:z:j(t) fort ¢ T,

vi(t) fort €T,

Using the modified simulator, we systematically perform ICS feature manipulations to gen-
erate a set of synthetic anomalies. For each anomaly, we execute a 40-hour TEP simulation,
manipulate a chosen sensor or actuator, and record the resulting system states. For every sensor
and actuator in TEP, we simulate four anomalies with different magnitudes, creating 89 anoma-
liedT]

Although these anomalies are generated synthetically, they simulate physically realizable
anomalies. For each manipulation, the data collected from non-manipulated features were pro-
duced as the output of the physical process (i.e., the chemical process) responding to the manip-
ulation. In cases where manipulations produced runtime errors in the MATLAB simulation, we
excluded them from our dataset. Maintaining physical realizability is important to ensuring that
the executed attacks are possible, and is essential when evaluating ML-based approaches in other
security contexts, such as face recognition [151]] and malware detection [[174]].

Though the anomalies in this dataset do not necessarily correspond to an intentional ICS
attack outcome, they are genuine statistical anomalies (i.e., 95th percentile event or higher) that
share common properties (e.g., manipulation patterns and magnitudes) with the manipulations
observed in the real attack dataset. We use the synthetic anomalies to support a systematic
analysis of the relationship between manipulation properties and attributions.

Defining manipulation properties

We define each anomaly by its manipulation magnitude and the type of feature that is attacked.
The anomalies contained in all datasets are summarized in Table [5.1] In Section[3.4.2] we iden-
tify properties that significantly affect attribution accuracy and which attribution methods are
optimal.

11 out of 100 manipulations triggered a shutdown sequence, causing the MATLAB simulator to exit and pre-
venting data collection.

31

Table 5.1: A summary of the manipulations used for evaluation, across a set of real attacks from prior work
(SWaT, WADI) and a set of synthetic anomalies generated with a public simulator (TEP).

Dataset Magnitude Location H Total

SWaT | 0.06-36.31 std deys | 2 Sensors 43
19 actuators

WADI | 0.5-91.00 std devs | |0 sensors 24
8 actuators

TEP 25 std deys | D0 sensors 89

33 actuators

We define the manipulation magnitude using the difference in standard deviations between
feature j’s benign distribution and its replaced value:

|max(x;(t)) — mean(z,(t))|
stddev(z; (1))

magnitude =

The attacks in the SWaT and WADI datasets are performed with manipulations that span
a wide magnitude range, from small manipulations within the benign distribution (magnitude
of 0.06) to large manipulations outside the benign distribution (magnitudes over 35). When
generating synthetic anomalies, we perform manipulations at four different magnitudes: +2, -
2, +3, and +5. Our synthetic anomalies are performed within the distribution of magnitudes
observed in the real attack dataset, which has an average magnitude of 3.25 standard deviations.

We also define attacks by the type of feature that is manipulated. Features in TEP are grouped
into three categories: actuators, which directly control the chemical process; sensors, which
are read by controllers to compute future actuator values; and out-of-loop features, which do
not impact the ICS process. For TEP, we only perform manipulations on sensors that result in
changes to the physical process. SWaT and WADI provide documentation for each feature and
each attack: we manually verified that each manipulation was executed as described and that
each manipulation affects the physical ICS process.

5.2.2 Implementing ICS anomaly detection

In this section, we describe our implementation of statistical and deep-learning-based anomaly-
detection models for ICS, closely following the methodology from prior work.

Statistical and linear anomaly detection

We implement two statistical and linear anomaly-detection methods from prior work: PASAD [[15]]
and AR [73]].

We use the open-source PASAD implementatiorﬁ by Aoudi et al. and tune it for each dataset
in our use case. PASAD is parameterized by the training length NV, the input window length

Znttps://github.com/mikeliturbe/pasad

32

https://github.com/mikeliturbe/pasad

Table 5.2: The number of detected attacks (at least one example exceeds the MSE threshold), when using a
validation-error-based tuning for the error threshold (99.95%).

Total Detected
Total | CNNs GRUs LSTMs
SWaT | 43 33 20 34
WADI | 24 15 8 15
TEP | 89 55 58 64
All datasets | 156 | 103 86 113

(called lag) L and the statistical dimension . We refer to the anomaly-detection methodology
and configurations by Aoudi et al. [15]], using the same default parameters for the SWaT and TEP
datasets. Since WADI is based on the SWaT system, we opt for the same parameter values for
WADI and SWaT. For SWaT and WADI, our parameters are: N = 30000, L = 5000 and r = 10;
for TEP, our parameters are: N = 10000, L = 5000 and r = 16.

The original AR implementatiorﬂ is in C++ , so we opt to implement a linear model on
our own in Python. AR is parameterized by p, the number of prior states used in the linear
model. Based on the default settings, we use p = 10, and train our linear models with the Adam
optimizer.

Deep-learning-based anomaly detection

A variety of prior work performs hyperparameter tuning across model architectures to find opti-
mal deep-learning-based anomaly-detection models for ICS [[101, 203], including the work de-
scribed in Chapter [} this is not the focus of this chapter. Nevertheless, we perform a best-effort
training of anomaly-detection models for attributions.

We evaluate across three model architectures: convolutional neural networks (CNNs) [101]],
gated-recurrent-unit networks (GRUs) [S7]], and long-short-term-memory units (LSTMs) [[135,
203]]. To best compare across model architectures, we use a similar model size for each architec-
ture: we train a 2-layer, 64-unit, 50-length-history model for each combination of dataset (SWaT,
WADI, TEP) and architecture (CNN, GRU, LSTM), with the default Adam optimizer. For each
training dataset, we use 80% of the benign dataset for training and 20% of the benign dataset for
validation. As suggested by our findings in Chapter @, we implement early stopping, which halts
training when the validation loss stops decreasing. Finally, we test the anomaly-detection models
against the manipulations from SWaT, WADI, and TEP. The results are shown in Table @ We
find that the size of the underlying reconstruction model has a small effect on detection accuracy;
each model’s benign validation error is below 0.25.

5.2.3 Attribution methods for ICS anomaly detection

After implementing ICS anomaly-detection models (as described in Section[5.2)), in this section
we describe how we adapt attribution methods for anomaly-detection outputs.

3https://github.com/RhysU/ar

33

https://github.com/RhysU/ar

We provide the technical definitions of our attribution methods, adapted for ICS anomaly
detection. Each attribution method A requires an anomaly-detection model F'(x;_p, ..., z;_1) —
#; and time-series input X, € R%": computing an attribution A(X.); for feature j.

Raw-error ranking Our baseline attribution method uses the raw, per-feature anomaly scores
produced by each model as the attribution, as suggested in prior evaluations of ICS anomaly-
detection attribution [82, [101]].

For AR and deep-learning-based anomaly detection models, we use the per-feature prediction
error (i.e., before taking the average for MSE) between input z; and its prediction Z; as the
anomaly score. Each error s; corresponds to the anomaly score for an ICS feature j:

With PASAD, each feature’s input ; produces a departure distance that represents its devia-
tion from normal; we use the departure distance as the anomaly score. Details on how to compute
projection matrix P and subspace centroid ¢ can be found in the original publication [15]].

Sj = (6— PZEj)Q.

Counterfactuals Given input X, and baseline X}, a counterfactual attribution is computed by
changing the value of each feature and measuring the change in the MSE. We use the feature-
wise average benign value as X, and define a masking function A/;(.X), which removes all but
the j-th feature from X. We define the additive counterfactual A 4:

Ax(Xe); = MSE(X, — M;(Xy) + M;(X.)) — MSE(X))
We define the subtractive counterfactual Ag:

Ag(X.); = MSE(X.) — MSE(X. — M;(X.) + M;(Xy))

Saliency map [156] The saliency map Agy (X) is the product of X, and the gradient of the
quantity of interest with respect to the input window, computed at X.. We compute the gradient
with respect to the MSE:
OMSE(X.)
Asy(Xe) = Xe X ——=
sur(Xe) X

SmoothGrad [163] Prior work found that saliency maps are sensitive to small input changes;
in response, SmoothGrad averages saliency maps over multiple perturbations of X..

B 1 OMSE(X. +¢)
Asa(X,) = X, x nz % e~ N(0,0)

SmoothGrad is defined by n, the number of samples used, and o, the sampled noise variance.
We use the suggested values o = 0.1 % (X™ — X™") and n = 50.

34

Integrated gradients [170] Integrated gradients calculate the change in a quantity of interest
between X, and a baseline X, producing more meaningful results. Attributions are computed
through an approximate path integral that interpolates between X, and X..

1 <= OMSE(X, + (X, — Xp))
A[c;(Xe> ~ (Xe — Xb) X — Z X

n
k=1

Using larger n increases the accuracy of the path-integral estimate. In our work, we use
n = 200 and the feature-wise average benign value as the baseline X.

Expected gradients [SS] Instead of assuming a single baseline, expected gradients use samples
from the training distribution D. Attributions are computed as the expectation over baseline
examples and interpolation points. The expectation is approximated by averaging over estimates:
for each estimate i, a sample baseline X; is drawn from the benign training dataset and an
interpolation point «; is drawn from the uniform distribution.

1 ¢ OMSE (Xp; + o;(Xe — Xy
AsolX0) ~ - 3[(x, — x) P il = Kl
1=0

Qay ~ U(O,l),Xbl ~ D

To sample baselines from our training dataset, we sample a timestep ¢ from the benign dataset
and use its process values and corresponding history. As the number of samples n increases, the
stability of the expected gradients increases. We use the suggested n = 200 for convergence.

LIME [139], SHAP [119], and LEMNA [71] LIME, SHAP, and LEMNA are prominent,
black-box attribution methods. These techniques use perturbed samples to train a local, linear
approximation around an input, and use the approximation model’s coefficients as attributions.
We use public LIMEﬂ and SHAPE] libraries maintained by their original authors. We implement
LEMNA based on its published description [71] and public code examplesﬂ Each of the de-
scribed implementations assumes a single-output classification or regression task. To adapt these
implementations for ICS anomaly detection, we use a technique from prior work [14} 82]: for
a given input, we identify the feature with the highest prediction error and compute its LIME,
SHAP, or LEMNA attributions. Thus, we adapt the anomaly-detection task as a single-output
regression task to comply with the design and API of LIME, SHAP, and LEMNA.

5.2.4 Evaluation metric for attributions: AvgRank

Prior work that evaluated explanations of ICS anomaly detection uses a mix of qualitative eval-
uations of visualizations and analyses of individual attacks [43) |82]]. To quantitatively compare
attribution methods over full datasets, we propose the metric AvgRank. Across a set of ICS

Yhttps://github.com/marcotcr/lime

Shttps://github.com/slundberg/shap
%nttps://github.com/Henrygwb/Explaining-DL

35

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://github.com/Henrygwb/Explaining-DL

attacks, AvgRank represents the average ranking of the manipulated feature when features are
ranked by their attributions.

For a given anomaly’s attribution s, we sort each feature’s attribution s; in descending order
and identify the placement of the manipulated feature j'. Since the analysis in this work is
across three ICS of varying dimension, we normalize rankings by dividing the placement by the
number of features in the evaluated ICS dataset. We then report the average placement across all
anomalies for a given attribution method.

This produces the AvgRank: a score € [0, 1] (lower is better) that represents the average
proportional ranking of attacked features when identified by an attribution method. In other
words, an attribution method with an AvgRank of 0.2 indicates that this attribution method will,
on average, place the attacked feature in the top 20% of features.

We design AvgRank with inspiration from prior work that proposed criteria for explanations
of ML models when applied to security-relevant tasks [185]]. Although these proposed criteria
assume a classification task, some of them are relevant for attributions of ICS anomaly detection.
First, descriptive sparsity requires that attributions identify a small set of features; our proposed
use of attributions filters out sensors and actuators in an ICS. AvgRank could be interpreted as
the average number of sensors and actuators that would need to be displayed in an anomaly alert
to ensure that the manipulated feature is shown. Second, completeness requires that attribution
methods perform well over a variety of inputs; AvgRank measures performance over a set of
anomalies. In Section[3.4.2] we demonstrate the importance of evaluating attributions over di-
verse datasets by using AvgRank to reveal discrepancies in attribution accuracy across attack
properties.

5.3 Results: Evaluating attributions of ICS anomalies

In this section, we report on our evaluation of two types of attribution method for ICS anomaly
detection:
* Raw-error ranking: a baseline method that ranks features in descending order by their
reconstruction error

* ML-based attribution methods: attribution methods from other ML domains, adapted for
ICS anomaly detection
Section[5.3.1] describes our evaluation of attribution methods using strategies from prior
work: we find that raw-error rankings perform much less well that previously reported, and
ML-based attribution methods also perform worse than anticipated.

5.3.1 Assessing prior attribution strategies

We first describe our results for raw-error ranking, which ranks features in descending order by
their error (i.e., by the amount they deviate from the predicted value). We apply raw-error ranking
to all detected attacks in all three datasets: 128 attacks for the AR model, 93 attacks for PASAD,
103 attacks for the CNN, 83 attacks for the GRU, and 113 attacks for the LSTM. Table[5.2]shows
the breakdown of detected attacks. We find the first detection point for each labeled attack and
use the per-feature reconstruction errors at that timestep as attributions. We rank all features by

36

Table 5.3: Top-k feature attribution accuracy and AvgRank for the baseline attribution strategy from prior work
(ranking features by raw error at detection time). We find that this strategy performs worse than previously re-
ported; for all methods, less than 40% of all attacks are identified by the highest score.

Total Top-1 Top-5 Top-10 AvgRank

CNNs 103 40 39%) 59 (57%) 70 (68%) 0.187
GRUs 86 26 (30%) 54 (63%) 62 (72%) 0.141
LSTMs 113 27 (24%) 62 (55%) 75 (66%) 0.171

descending attribution and use the rank of the manipulated feature to compute AvgRank (e.g., an
AvgRank of 0.25 implies that the manipulated feature is on average, ranked within the top 25%),
repeating the process for each anomaly-detection model.

To find the detection points for our deep-learning-based models, we use each model’s 99.95-
th percentile validation MSE as a threshold, employing a common strategy from prior work [101,
203]]. For the AR model and PASAD, we use the 99.5-th percentile validation error, as very few
anomalies are detected at the 99.95-th percentile threshold. At test time, an anomaly is detected
if any input within the labeled anomaly region produces an MSE above the threshold.

Table [5.3] shows the accuracy of the prior attribution strategy for each anomaly-detection
method, spanning both statistical methods and deep-learning-based models (CNNs, GRUs, and
LSTMs). Although prior work has reported high attribution accuracies (e.g., 80% accuracy
within the top few feature{] [101]), we find that raw-error rankings are not as effective as re-
ported; for all models, less than half of all attacked features are correctly identified by the highest-
error feature, and at least one quarter of attacked features could not be identified within the top
10 features. Across all three deep-learning-based models, the AvgRank ranges from 0.14 to 0.19;
in other words, on average, the manipulated feature is ranked within the top 14—19%, which is
far more than the top few, as suggested in prior work.

Although the AR model and PASAD are effective at detecting attacks, their attributions per-
form far worse than for the deep-learning-based models; their AvgRank is much higher (over
0.3) and over 50% of all attacks are not correctly attributed by the top 10 features. This is likely
because AR and PASAD model each feature independently, meaning that they cannot consider
inter-feature relationships when performing anomaly detection. Thus, when an ICS feature is
manipulated and subsequent components respond to the change, AR and PASAD identify are
particularly likely to identify those additional features as anomalous.

5.3.2 Selecting attribution methods with a counterfactual benchmark

Before comparing raw-error ranking attributions with ML-based attribution methods, we select a
group of best-performing ML attribution methods as candidates for comparison. To select these
attribution methods, we design and use a counterfactual benchmark to systematically compare
attribution methods. Figure[5.2] shows the result of this benchmark: We find that the saliency
map (SM), SHAP, and LEMNA are the best-performing attribution methods.

"The number of features selected for investigation varied by attack: from one single feature to as many as four.

37

= MSE SM mmm SG EEm |G EEE EG CF-Add CF-Sub LIME =mm SHAP mmm LEMNA
SWAT WADI TEP

0.5 0.5

4
o

o
IS

0.4+ 0.44

o
w

0.34 0.34

o
N

0.24 0.24

=3
H

0.14 0.14

Perturbed Feature AvgRank

o
o

0.0+

0.0-
CNN GRU LSTM CNN GRU LSTM CNN GRU LSTM

Figure 5.2: Results for all datasets (SWaT, WADI, TEP) and model architectures (CNN, GRU, LSTM) over our
counterfactual benchmark; the AvgRank is shown (lower is better). Within white-box attribution methods (SM,
SG, IG, EG), the saliency map (SM) always performs the best, and within black-box attribution methods (CF-Add,
CF-Sub, LIME, SHAP, LEMNA), SHAP and LEMNA generally perform best. Notably, SM and LEMNA always
outperform the raw-ranking of MSEs (MSE).

ICS anomaly detection is inherently noisy: benign features produce (small) errors and in-
teractions between sensors and actuators can complicate the analysis of attribution methods. To
remove these effects from our evaluation, we craft synthetic inputs to systematically evaluate
an attribution method for a given anomaly-detection model. We evaluate attribution methods
by computing counterfactual inputs; this ensures that a controlled manipulation introduced to a
single input feature is the only source of error in an unsupervised anomaly-detection model.

First, we craft a zero-MSE, input-output pair by selecting an input window X®®*¢ from the
benign training data, feeding it to an anomaly-detection model F’, and storing the corresponding
process-value prediction Y4%¢ = F'(X5¢) We then perturb a feature j in X***¢ by two standard
deviations to generate X?"*: when computing errors, we compare the prediction F'(X?¢"") with
the synthetic ground-truth Y?*¢, To compute attributions, an attribution method uses X?*"* and
Yes¢ ag the input window and ground-truth respectively. The perturbation is the only change
introduced in the zero-MSE input-output pair, so a correct attribution would assign the perturbed
feature j the highest score. We rank feature j in the attribution and repeat this measurement for
all features, ultimately computing the AvgRank for each method.

We evaluate each attribution method for all nine combinations of model architecture (CNNs,
GRUs, and LSTMs) and dataset (SWaT, WADI, TEP). Figure shows the resulting AvgRank
across all counterfactual inputs. Three attribution methods perform well: the saliency map (SM),
SHAP, and LEMNA. These three methods outperform the MSE on all models and datasets, with
the exception of SHAP on TEP (e.g., for SWAT CNNs, the MSE AvgRank is 16.4, whereas
the SM, SHAP, and LEMNA AvgRanks are 2.6, 2.6 and 3.8 respectively). This suggests that
attribution methods (black-box or white-box) can provide stronger insight than raw MSEs when
attributing ICS anomalies.

White-box variants (SG, IG, and EG) outperform saliency maps on images [55} [163} [170],
and our results suggest that the performance of these methods may not translate to ICS anomaly
detection. We suggest two reasons why: First, the dynamics of ICS are more precise than in
images; although adding random noise to images (as done in SmoothGrad) helps generalize
attributions for images, randomness does not provide this benefit for ICS anomaly detection.

38

E MSE SM SHAP B | EMNA

0.30
0.257
0.246 0.242 0.248

N 0.251 0224 0.221 oa1a 0.236
C 0.20{ 0.187 0.193
S 0.171
o 0.151 0.141
2

0.101
<

0.05 1

0.00 ‘ ‘ ‘

CNN GRU LSTM

Figure 5.3: When attributing ICS anomalies at the time of detection, the raw-error feature (MSE) produces a lower
AvgRank (lower is better) than all best-performing ML-based attribution methods: the saliency map (SM), SHAP,
and LEMNA.

Second, benign ICS behavior cannot be well-represented with a single (or sample of) reference
input(s), and thus choosing an effective baseline (required for IG and EG) is difficult.

When comparing black-box attribution methods, we find that SHAP and LEMNA outperform
LIME. LIME uses a linear approximation: in contrast, SHAP (which uses Shapley values) and
LEMNA (which uses a fused-lasso, Gaussian mixture model) can better capture the inter-feature
dynamics of an ICS.

5.3.3 Evaluating ML-based attribution methods

Next, we compare raw-error ranking to our selection of ML-based attribution methods. For each
detected attack, we find the first detection point using the same methodology as with raw-error
rankings. We then find the corresponding model input for the detection point—using the range
of data from the 50 timesteps prior to the detection point. The model input is used as input
to an attribution method, producing a score for each ICS feature. We use these scores to rank
features and compute AvgRank, repeating the process for each combination of deep-learning-
based anomaly-detection model and attribution method.

Figure [5.3|shows the resulting AvgRank for all attribution methods and deep-learning anomaly-
detection models. Although the results of our benchmark suggest that, in theory, ML-based attri-
bution methods outperform raw-error ranking, ML-based attribution methods perform far worse
when applied in practice to attack scenarios: for each model architecture, raw-error ranking pro-
duces a lower AvgRank than all ML-based attribution methods (0.14-0.19 for raw-error ranking,
compared to over 0.2 for most ML-based attribution methods).

Finding 7: When computed at the timestep when the anomaly is detected, attributions
based on ranking raw reconstruction errors from anomaly-detection models are less ac-
curate than previously reported, and ML-based attribution methods have similar or worse
accuracy.

39

anomaly ! ' anomaly

AIT504 start | end
_> 4—
semservae !

AIT504

prediction error | |

MSE (overall): inout
input ends at l_n[()ju
anomaly start window

(‘early’) M ﬂ '

MSE (overall):

. : i input |
input begins at win%ow
attack start i i
(‘best guess”) N j [| L R]
MSE (overall): | ; |
input ends at v;;%%tlv
detection point
(‘late”) | M H | l ki |

0 50 100 150 200 250 300 350 400

Time (s)

Figure 5.4: We show outputs of a GRU-based anomaly-detection model on SWaT attack #10: when sensor AIT504
is manipulated (top), its prediction error (2nd) is insufficient to trigger an anomaly. As the ICS responds and the
total error increases, the model detects the anomaly over 100 seconds later. From this example, attributions can be
computed at three points (shown in red) with corresponding input windows (shown in grey): at the anomaly start
(3rd), when the input window coincides with the anomaly (4th), or when the anomaly is detected (5th, bottom).

5.4 Results: Factors that affect attribution accuracy

To better understand why attributions fail, we perform a more detailed analysis of ICS domain-
specific characteristics: the timing of the attribution relative to the time the manipulation occurred
(Section[5.4.1)), properties of the manipulations (Section[5.4.2)), and the stealthiness of the ma-
nipulations (Section[5.4.3). We find that different attribution methods perform best in different
situations, and thus we propose an ensemble attribution method and find that it outperforms all
individual methods (Section [3.4.4).

5.4.1 Effect of detection timing on attributions

ICS anomaly detection is performed over a time-series input, so selecting the best timing for
attributions is an important consideration for optimal performance. The data in the selected
input window may contain too much noise or too little signal to make an accurate attribution.
We observe that there exists a “best-guess” timing: when ML-based attribution methods are

40

B t<[0,49] t&€[50,99] Bl t<€[100,end]
0.41 0.388
v
C 0.3 0.253 0.304 0.279
< © °° .228 0.225
Z 0.182
o> 0.2 .
©2 0145 0.122
<,, 0.095 0-113I "~ 0.096
]]
0.402
0.41
v
C 0.3
D © 0.248 0.237 0.220
oo 0.205 0.207 :
O o0.2
= 0.124
<, 0.101 ¢, 087 0.085 I0_071 0.093
oo] B
0.41 0.359
v
[.
s g% 0.260 0.242 0233
= 0.200 0.208 0.211
4 90.2- o 0.124
< 0.104 0.105 124 0,114
0.1- . .
0.0 T T T ,
MSE SM SHAP LEMNA

Figure 5.5: Across all detected attacks, we compare AvgRank (lower is better) across three timing cases, based

on the detection time ¢ relative to the start of the anomaly (¢ = 0). Considering that 50 timesteps are used for the
model input, we divide attacks based on if ¢ € [0,49], ¢t € [50,99], or t € [100, end]. For most cases, the AvgRank
is lowest when ¢ € [50, 99].

Table 5.4: We categorize each attack by its detection time ¢ relative to the start of the anomaly (considered ¢ = 0),
dividing into cases where the detection is early (¢ € [0,49]), slightly late ¢ € [50,99], or very late (¢ € [100, end]).
For each model architecture, the number of attacks that fall into each case is shown.

Total ¢ € [0,49] ¢ € [50,99] ¢ € [100,end]
CNNs 103 52 10 41
GRUs 86 38 12 36
LSTMs 113 56 9 48

computed at this timing, their accuracy improves.

41

Example: How timing can affect attribution

To illustrate how timing can affect attribution, Figure[5.4] shows the sensor value, sensor pre-
diction error, and the total MSE for a GRU-based anomaly-detection model for the duration of
SWaT attack #10. In this attack, a chemical sensor’s value (AIT504) is increased to 16, causing a
reverse-osmosis sequence to shut down; the GRU model detects the anomaly within two minutes.

If the input window is selected immediately before the detection point (“late”, shown in bot-
tom row of Figure[5.4), the overall MSE is high: many features have drifted from their expected
values in reaction to the attack and will appear anomalous, making it difficult to attribute the
attack to the correct feature.

If the input window is selected immediately at the start of the attack (“early”, shown in third
row of Figure[5.4), observing such feature drift can be avoided; however, since our anomaly-
detection models rely on historical input, the input window will contain benign signal, compli-
cating attribution.

We observe that, in our dataset, the detection point can vary relative to the start of the
anomaly. Given the model’s input-window length (50 timesteps), the detection can occur be-
fore the window length has passed, far after multiple window lengths have passed, or at a time
between these two cases—within one and two window lengths. Table [5.4] shows the number of
occurrences for each of the described three cases: all three cases are prominent. We analyze Av-
gRank across these three cases and show the results in Figure[5.5] In most settings, attributions
computed within 50 seconds of the anomaly start perform the worst, and attributions computed
within 50 to 100 seconds of the anomaly start perform the best.

Finding 8: ICS anomalies vary in when they are detected relative to their start time.
Differences in detection timing affect attribution accuracy.

Based on these observations, the ideal timing (for performing attribution) should be suffi-
ciently near the start of the anomaly to avoid observing the original manipulation’s subsequent
effects; and should be sufficiently after the start of the anomaly, such that the input window
contains sufficient manipulated information. Towards achieving these goals, we select an in-
put window that starts at the same time as the anomaly, as shown in the fourth row of Figure [5.4]
(e.g., given a 50-timestep input window length, we would use the 51st timestep after the anomaly
start), and we call the strategy using this input window the “best-guess” timinﬂ

Comparing timing strategies

Based on the observed differences in attribution accuracy across timing, we evaluate attribution
methods across two timing strategies:

* “Practical” timing: when the input window immediately precedes the detection time (used
in prior evaluation)

* “Best-guess” timing: when the input window starts at the same time as the anomaly

8<Best-guess” since in practice the start time is not known.

42

Bl Practical timing HEll Best-guess timing
Practical timing - late only =~ HEE Best-guess timing - missed detection

0.334

0.1680.1670.172
0.1010.1120.106

0.41 0.352

0.242

0.221

0.202 0.186 0.1930.184 0.184

0.141 0.146 0.150 0.139 0.116 0.136
OllAJO.OQZ 0.083.
0.0-
0.4] 0.379
A4
s c 03 0.248 9 236
© . 0.214
E X ool 0171 0.192 ¢ 178
o 0.14
S 0.1150.1070.111
<oa1
0.0

MSE SM LEMNA

Figure 5.6: For all datasets, the AvgRank (lower is better) is reported after attributions are computed with different
timing strategies: “practical timing”, the prior attribution strategy that computes attributions immediately when
anomalies are detected, and “best-guess timing”, which computes attributions such that the input starts with the
anomaly. Two additional variants are reported: practical timing with early detections removed, and best-guess tim-
ing for attacks that are not detected by the underlying anomaly-detection model. Results for the CNN (top), GRU
(middle), and LSTM (bottom) are shown. In all cases, choosing an alternate timing strategy from the “practical”
strategy improves attribution accuracy.

We compare the AvgRank at the best-guess timing to the practical timing, across all datasets
(SWaT, WADI, and TEP) and all deep-learning-based model architectures (CNNs, GRUs, LSTMs).
When evaluating the best-guess timing for each anomaly, the input is exactly the same across at-
tribution methods and models, even if models detect the anomaly at different times.

Figure[5.6] shows the AvgRank for different timing strategies. We first compare the best-
guess and practical timings (“best-guess timing” vs. “practical timing”): when an anomaly is
detected, if instead the best-guess timing is used, does AvgRank improve? We find that in 10
out of 12 cases (including all cases with ML-based attribution methods), the best-guess timing
outperforms the practical timing. For example, LEMNA improves for all models: the AvgRank
drops from 0.246 to 0.112 for CNNs, from 0.242 to 0.083 for GRUs, and from 0.236 vs 0.107
for LSTMS. Furthermore, when the best-guess timing is used, LEMNA is the best-performing
attribution method for all models.

43

Finding 9: ML-based attribution methods outperform raw-MSE rankings when attribu-
tions are computed with inputs beginning at the start of the anomaly.

To analyze the impact of early detections on practical timings, we compare the AvgRank
after removing attacks that are detected before the 50th timestep, shown in Figure [5.6] (“practical
timing” vs “practical timing—Tlate only”). We discuss the results of the CNN; the results for the
GRU and LSTM show similar observations. Although early detection of anomalies is clearly
a beneficial outcome in practice, it results in worse attributions: removing the early detections
improves the MSE AvgRank from 0.187 to 0.121. In all 12 cases, AvgRank improves after
removing early detections.

Separating timing from detection outcome

Finally, we investigate if attribution methods could be useful even in cases where anomaly de-
tection fails. Using the best-guess timing, we compare the AvgRank between anomalies that are
detected and anomalies that are missed by the anomaly-detection model, shown in Figure [5.6]
(“best-guess timing” vs “best-guess timing—missed detection”).

For raw-MSE rankings, the performance is drastically worse for anomalies that are missed:
the AvgRank increases from 0.164 to 0.334 for CNNs, from 0.146 to 0.352 for GRUs, and from
0.177 to 0.379 for LSTMs. This is expected: when the MSEs are insufficient to detect the
anomaly, they are also insufficient to identify the manipulated feature. However, when these
same inputs are used with ML-based attribution methods, the AvgRank performs far better for
missed attacks. ML-based attribution methods perform approximately as well, regardless of
whether the anomaly is detected or not. For example, the CNN LEMNA attribution AvgRank
changes from 0.112 to 0.106. One potential implication of this observation is that attribution
methods should be computed separately from detection times and detection outcomes; this could
potentially be accomplished with a data historian or other post-hoc incident analytics for anoma-
lies that are not detected in real time.

In summary, we found that the timing of attributions has a large impact on attribution ac-
curacy. Although we do not advocate for a specific timing strategy, we would like to highlight
that computing attributions at “practical” timings, the strategy most commonly used in prior
work [82, [101], does not lead to best attribution outcomes, although it reflects how attribution
methods might be used in practice.

5.4.2 Effect of attack properties on attributions

Although broad evaluations of attribution methods can reveal general trends, a deeper analysis
across attack properties reveals imbalances in attribution accuracy between different attacks.
In this section, we investigate how (i) the magnitude of the manipulation used in the attack
and (ii) the type of feature attacked affect the accuracy of attribution methods. To enable such
analysis, we define all anomalies from our three datasets (SWaT, WADI, and TEP) along common
properties (as described in Section[5.2.1)). We compute attributions at their best-guess anomaly
timing (as described in Section [5.4.1)) and perform statistical tests to quantify each dimension’s

44

Table 5.5: We perform three statistical tests across our attribution results under “best-guess” timing: we compare
the effect on AvgRank from manipulation magnitude (left), the type of feature attacked (middle), and whether
the attack is multi-point (right). Results with p-value below 0.016 (applying Bonferroni correction) are bolded.
Raw-error rankings (MSE) perform better on high-magnitude, sensor-based attacks, whereas attribution methods
perform better on high-magnitude, actuator-based attacks. This analysis suggests that no attribution method is
always optimal across a variety of attacks.

o . Sensor vs. actuator (continuous) . . .
Att;\l/});ggg Model Magnitude (Pearson) vs. actuator (categorical) (ANOVA) Single-point vs. multi-point (ANOVA)
Corr. p-value AvgRank F(2, 153) p-value AvgRank F(1, 154) p-value
AR | -0.214 p=0.007 | 0.227,0.486, 0.244 9.02 p<0.001 | 0.300,0.232 1.18 p=0.279
MSE CNN | -0.336 p<0.001 | 0.162,0.306, 0.330 1487 p<0.001 | 0.199,0.304 460 p=0.034
GRU | -0.445 p<0.001 | 0.154,0.385,0.361 1795 p<0.001 | 0.224,0.288 1.75 p=0.189
LSTM | -0.399 p<0.001 | 0.152,0.362,0.360 1321 p<0.001 | 0.224,0.265 0.65 p=0421
CNN | -0.430 p<0.001 | 0.176,0.059, 0.281 1328 p<0.001 | 0.160, 0.205 172 p=0.192
SM GRU | -0.605 p<0.001 | 0.160, 0.050, 0.330 21.67 p<0.001 | 0.156,0.204 1.79 p=0.183
LSTM | -0.558 p<0.001 | 0.197,0.047,0.329 19.55 p<0.001 | 0.172,0.245 371 p=0.056
CNN | -0.497 p<0.001 | 0.176,0.059, 0.275 13.89 p<0.001 | 0.151,0.231 586 p=0.017
SHAP GRU | -0.595 p<0.001 | 0.149,0.054, 0.325 2431 p<0.001 | 0.141,0.225 6.47 p=0.012
LSTM | -0.513 p<0.001 | 0.181,0.039,0.333 2339 p<0.001 | 0.159,0.243 541 p=0.021
CNN | -0.544 p<0.001 | 0.085,0.034,0.291 26.82 p<0.001 | 0.070,0.252 39.06 p<0.001
LEMNA GRU | -0.537 p<0.001 | 0.084,0.034,0.278 2676 p<0.001 | 0.067,0.252 46.80 p<0.001
LSTM | -0.523 p<0.001 | 0.084,0.034,0.248 2723 p<0.001 | 0.070,0.248 40.55 p<0.001

effect on AvgRank. The results of this analysis are shown in Table[5.5]

Effect of magnitude

We compare the effect of manipulation magnitude on AvgRank. Since the range of observed
magnitudes in our dataset is large (0.06-91 standard deviations), we take the natural log of the
magnitude for our analysis. The first column of Table[5.5|shows, across all attacks, (i) the Pearson
correlation coefficient between the log-scaled manipulation magnitude and AvgRank and (ii) the
resulting p-value of the non-correlation test with Student’s t-distribution.

For all methods, we observe a statistically significant relationship between manipulation
magnitude and AvgRank. Since the anomaly-detection methods studied in this work rely on sta-
tistical modelling, lower-magnitude manipulations are more difficult to attribute. High-magnitude
manipulations produce more immediate and obvious dispersions [[70]], so attribution methods that
perform well on these manipulations may not be needed. An important area of future work would
be to design effective attribution methods that are robust to low-magnitude manipulations.

Effect of feature type

Sensors and actuators are fundamentally different: actuators induce changes in the industrial
process, while sensors provide feedback from the industrial process. Some actuators are also
encoded as categorical variables (e.g., a valve in SWaT is ON (1) or OFF (0)), while all sensors
in our datasets are continuous-valued. Although sensors and actuators differ in context and
representation, current statistical and deep-learning-based anomaly-detection models treat these
features equally as raw-valued features.

45

We analyze if whether a sensor or actuator was manipulated affects AvgRank. Raw-error
rankings perform significantly better for sensor-based attacks while ML-based attribution meth-
ods perform better on actuator-based attacks. We empirically explore this difference by using a
one-way ANOVA test to compare the AvgRank distributions when separating manipulations on
sensors, manipulations on categorical actuators, and manipulations on continuous actuators. The
results of this test are provided in the second column of Table[5.5]

For raw-error ranking (MSE), the AvgRank for sensors ranges from 0.152 to 0.162, whereas
the AvgRank for actuators is always above 0.306. For ML-based attribution methods, the find-
ings are different: attribution methods perform best on continuous-valued actuators (AvgRank
below 0.060), while still performing well on sensors (AvgRank below 0.198). This suggests that
attribution methods may be able to capture relationships that connect sensors with their corre-
sponding actuators, beyond what can be found by the raw-error ranking. We also find that at-
tribution methods perform worst on categorical-valued actuators (AvgRank above 0.248), likely
because attribution methods compute attributions for categorical-valued features as if they were
continuous-valued features.

In general, anomaly-detection models would likely benefit from modelling sensors and actua-
tors differently when computing attributions, in ways that consider (i) interdependencies between
sensors and actuators and (i1) categorical variables as states, rather than continuous values. At-
tacker models for sensors and actuators are also different; prior work has argued that actuator
attacks require more ICS knowledge and are more difficult to execute in practice [[179].

5.4.3 Evaluating against stealthier manipulations

Although attackers can adjust modify manipulation properties to reduce attribution accuracy,
stealthier manipulations strategies can be even more effective. In this section, we explore how
attribution methods are affected by stealthier manipulation strategies, extending beyond strate-
gies used for current datasets. We find that: (i) multi-point attacks are more difficult to attribute
and (ii) summing and linear manipulations are particularly effective at reducing attribution accu-
racy.

Multi-point attacks

We first consider multi-point attacks: when multiple features are manipulated simultaneously.
Multi-point attacks are included in the SWaT and WADI datasets. In general, correctly attributing
multi-point attacks is more difficult, since the effects of multiple manipulations are observed in
the ICS. We use a one-way ANOVA test to compare the AvgRank distributions for single-point
attacks and multi-point attacks; results are in the third column of Table @

We find that LEMNA is significantly more accurate for single-point attacks; the AvgRank
is over three times higher when a multi-point attack is performed. In general, all attribution
methods (except raw AR-score ranking) are less accurate on multi-point attacks.

46

Table 5.6: By introducing summing or linear manipulations, attackers can reduce attribution method accuracy.
When comparing summing or linear manipulations to their constant-valued counterparts: (i) the manipulation is
detected later and (ii) the AvgRank for all attribution methods increases.

Constant Summing Linear

Detection latency 200s 694s 1232s

MSE AvgRank 0.075 0.140 0.147

CNNs SM AvgRank 0.287 0.536 0.619
SHAP AvgRank 0.223 0415 0.362

LEMNA AvgRank 0.117 0423 0.551
Detection latency 242s 1132s 1316s

MSE AvgRank 0.064 0.102 0.072

GRUs SM AvgRank 0.279 0.513 0.525
SHAP AvgRank 0.204 0472 0.366

LEMNA AvgRank 0.087 0.389 0.468
Detection latency 174s 571s 1090s

MSE AvgRank 0.087 0.151 0.113

LSTMs SM AvgRank 0.355 0.551 0574
SHAP AvgRank 0.174 0.377 0.464

LEMNA AvgRank 0.072 0.343 0.634

Summing and linear manipulations

We implement two alternate manipulation types with the TEP simulator: linear and summing
manipulationﬂ These manipulations achieve the same sensor value as the constant-valued ma-
nipulations prevalent in SWaT, WADI, TEP, and prior work [32,[104], yet are more stealthy (i.e.,
harder to detect and attribute correctly).

A linear manipulation incrementally increases in magnitude with each timestep, and a constant-
sum manipulation adds a constant value to the original sensor value at each timestep, which
maintains the natural amount of noise. We define the stealthier manipulation types based on the
original attack model used in Section[5.2.1l For a summing manipulation:

x;(t) =x;(t) +c

For a linear manipulation, where ¢, is the initial point of the attack, and m is the slope:
3(t) = m(t — ta) + 7;(ta)

We use the modified TEP simulator to perform the stealthier manipulations on every sensor
in the system. For each sensor, we perform a two-standard-deviation-magnitude manipulation
with the stealthier manipulation types. We compare the AvgRank and detection latency for the
five cases where, regardless of manipulation type, all attacks are detected by all three models.

Table @] shows the resulting AvgRank and detection latency for constant, constant-sum, and
linear manipulations. On average, performing an attack with a stealthier manipulation causes the

%Included in our public set of 286 manipulations.

47

0.35

0.5
030/ —— SWAT WADI — TEP — MSE —— Avg
0.4 —— SM Avg (B =2.5
x 0.25 ~_ o g)
C
0.20 * 0.3
T @
50'15 Do.2
0.05 ® 0.1
000551 15 2 25 3 35 4 0.0 25 50 75 100 125 150
Beta value Time from attack start (seconds)
(a) “Best-guess” by [S-weight (b) “Best-guess” over time
0.35 0.5
030, —— SWAT WADI —— TEP — MSE — Avg
025 0.4 — SM Avg (B = 2.5)
S~ = —— LEMNA
& 0.20 - 503
x o
:%0'15 Q0.2
0.10 - <
005 T 0-1
000551 15 32 25 3 35 4 0.0 25 50 75 100 125 150
Beta value Time from detection point (seconds)
(c) “Practical” by 5-weight (d) “Practical” over time

Figure 5.7: Attribution averaging is evaluated on CNNs at two timings (“best-guess” on top, “practical” on bot-
tom) and in two ways. On left, the AvgRank (lower is better) of attribution methods is reported over 150 timesteps.
Regardless of timing strategy and the selected timestep, an average of attribution methods outperforms any indi-
vidual method. On right, across datasets, different 3 values are used when performing a weighted average, across
all six settings, 8 € (1.5, 3.25) are optimal (red star).

attack to be detected later: compared to constant manipulations, constant-sum manipulations are
detected at least three times later and linear manipulations are detected at least five times later.
In addition, the attributions computed at these detection points are less accurate: the AvgRank
increases in all cases. When using alternate manipulation types, attribution accuracy decreases
while the same target sensor value is achieved.

5.4.4 Evaluating ensembles of attribution methods

Different attribution methods are best in different scenarios: ML-based attribution methods work
best for continuous-valued actuators and at best-guess timings, whereas raw-error ranking works
best for sensors and at practical timings (Sections[5.4.1H5.4.2)). Thus, in this section, we design
an ensemble of attribution methods to combine the strengths of both types of attribution methods,
by using a weighted average over attributions from multiple methods. We find that this ensemble
outperforms all individual attribution methods.

Our ensemble of attribution methods computes attributions differently for sensors and actua-
tors; the ensemble uses a raw average of attributions for sensors and a [-average of attributions

48

for actuators, where 3 represents the relative weight of ML-based attribution methods. We com-
pute our ensemble over three attributions: the normalized MSE, the normalized SM attribution,
and the normalized LEMNA attribution.

5 SpsE + Ssm + SLEMNA if sensor
AVGy = ‘
? suse + B(ssm) + B(spemna) if actuator

We compare our ensemble of attribution methods to the raw average of attributions: the left
half of Figure [5.7shows the AvgRank for our ensemble with different -values; we compare av-
eraging strategies for CNNSs using the best-guess (Figure and practical (Figure timing
strategies (described in Section [5.4.1)). For all datasets and timing strategies, the best-performing
value of 3 € [1.5, 3.25] (i.e., higher weight for ML-based attribution methods for actuators) out-
performs the raw average (i.e., when 5 = 1). We also compare our ensemble to the raw average
with GRUs and LSTMs; in all cases the best-performing 5 > 1, which shows that our ensemble
outperforms the raw average.

We next compare our ensemble attribution method to individual, best-performing attribution
methods: the raw-error ranking (MSE), SM, and LEMNA. Figure [5.7b| shows the AvgRank for
various attribution methods (individual and ensemble) for the CNN model over 150 timesteps,
beginning with the start of the anomaly. Similar to what was found in Section[5.4.1] we find that
ML-based attribution methods are initially less accurate, but their accuracy improves over time;
conversely, a ranking of raw errors is initially accurate but becomes less accurate over time.
Our ensemble attribution method combines strengths of each individual method and produces
the lowest AvgRank over most timesteps. Our ensemble attribution method also outperforms all
individual attribution methods when used with a practical timing strategy (Figure[5.7d)), showing
that it can also be used in practice when ground-truth timing is not known. This finding holds
when our evaluation is repeated with GRUs and LSTMs.

Finally, we determine what the best-performing configuration for our ensemble attribution
method is in practice: Figure shows that when using our ensemble attribution method with
B = 2.5, and attribution are computed between 25 and 50 seconds after the anomaly is detected,
the AvgRank is lowest. Thus, we observe this configuration of our ensemble attribution method
to be the best-performing attribution method across all attribution methods evaluated in this work.

Finding 10: An ensemble of attribution methods outperforms all individual attribution
methods at identifying which feature was manipulated in an ICS anomaly.

5.5 Survey: ICS operator perceptions of attributions

Our experiments showed that attribution methods do not achieve perfect accuracy: the feature
with the highest attribution score was actually the manipulated feature for less than 39% of
all attacks (see Section[5.3.1). This raises the question: are imperfect attributions for anomaly
detectors useful to ICS operators?

In this section, we describe the methodology and results of a preliminary survey of ICS oper-
ators, which was conducted concurrently with our experiments to better understand whether and

49

how attributions would be helpful for responding to anomalies. We sought operators’ perspec-
tives on the following questions:

1. How do ICS operators respond to anomaly-detection alerts and how would attributions fit
into their workflow?

2. Assuming imperfect attribution performance, would operators find it more useful to be
shown fewer features, but with a higher chance of omitting the feature that caused the
anomaly; or more features, with a lower chance that the manipulated feature will be
missed?

Survey methodology

First, we asked participants to describe the type of ICS they have experience with and their role in
operating ICS. Next, to surface how operators integrate anomaly detectors into their workflows,
we asked participants what kinds of anomaly detectors they have experience with, the benefits
and challenges of using them, and what their role is in diagnosing the root causes of an anomaly.

Then, we asked participants to evaluate the tradeoff between the number of reported fea-
tures and attribution accuracy. We showed participants a sample output for an attack in the
SWaT dataset: a subset of the sensors and actuators, their values, and their attribution scores
(in descending order). We then asked the participants to rate on a five-point Likert scale how
useful the output would be in an attack scenario. We varied the number of features shown in
the output, between the top two, five, ten, 20, or all 34 features[ﬂ We also varied the error rate
(the percentage of attacks where the attacked feature is not included in the subset of features
shown in the output) between a “low”, “medium”, and “high” level, which changes depending
on the number of features shown (See Table [5.8)). The error rates were based on our initial es-
timates of attribution accuracy; later we observed that the “high” error rate roughly matches the
empirical error rate of raw-error rankings for the LSTM-based detection model using practical
timings on SWaT, and the “medium” error rate roughly matches the empirical error rate of the
best-performing LSTM-based ensemble attributions on SWaT. Lastly, we asked participants to
explain the reasoning behind their ratings, and how they would integrate attributions into their
workflow. The full survey text is available in Appendix

Participant recruitment and ethics

We recruited participants by sending email flyers to employees at organizations that run ICS and
by sending private messages via LinkedIn to people with job titles relating to ICS security (e.g.,
OT Security Architect). We recruited seven participants in total. Participants were compensated
with $5 gift cards. Our survey was approved under Exempt Review by our institutional review
board.

10This survey was performed with an earlier version of SWaT with a feature selection step, and thus only 34
features were used.

50

Table 5.7: List of survey participants: their participant code, the type of ICS they operate, and their role at their
organization.

ICS Type Role/Title

P1 Distributed control system Cybersecurity, design and acquisition

P2 (Not disclosed) Security engineer

P3 Unmanned vehicle ground control Operator supervisor

P4 Various Consulting and Research

P5 Electrical power generation and transmis- SCADA Engineering, System Integration
sion and Security

P6 Electric Transmission Security Engineer

P7 Various (manufacturing and distribution) CISO

Table 5.8: Participants’ ratings for the usefulness of hypothetical attribution outputs, varying the number of fea-
tures shown and the error rate (1 being “not at all useful” and 5 being “extremely useful”). “Error rate” is the
likelihood that the manipulated feature is not in the output. Bolded values indicate that the average rating was
“moderately useful” or above.

Output Features Usefulness (1-5)
Error rate: (H, M, L) (High) (Medium) (Low)
2 (70%, 40%, 20%) 1.29 2.00 2.86
5(50%, 30%, 10%) 1.57 2.57 4.14
10 (40%, 20%, 5%) 1.57 2.86 4.29
20 (30%, 10%, 5%) 2.14 3.14 4.43
All 34 (0%) 243

Survey results

Participants worked on a variety of ICS, ranging from electric transmission to controls for un-
manned vehicles (see Table for a summary of their roles and types of ICS operated). All
had experience with rule-based anomaly detection, and four reported using ML-based anomaly
detection.

Participants described anomaly detection as the first step in the attack mitigation process,
followed by manual investigation and correction (P1, P2, P4, P6). Some challenges reported
by participants included (i) excessive false positives that led to “wild goose chases”, requiring
manual mitigation by operators (P1, P2, P5), and (ii) a lack of data and context in alerts raised
by detectors, which made it difficult to trace root causes of anomalies (P4, P6). Prior work has
found that, more broadly, SOC analysts have similar challenges with security alerts [12].

Participants provided several examples of how attributions would be integrated into their
workflow. Attributions could help provide context on the relationship between system com-
ponents (P3, P4) and inform follow-up diagnostic steps, such as running tests and consulting
runbooks (P2, P4). Attributions could also be integrated with other data sources such as control
system logs (e.g., SCADA) in a security information and event management (SIEM) system (P35,
P7).

51

Participants perceived attribution outputs with more features and low error rates to be more
useful (Table [5.8). Participants reported attributions in the low-error-rate condition to be “very
useful” (average score 4.14—4.43), if 20, ten, or five features were shown. For the medium-
error-rate condition, roughly corresponding to our ensemble model’s performance, participants
reported attributions to be “moderately useful” if 20 features were shown (3.14) and “slightly
useful” (2.00-2.86) for fewer features. For the high-error-rate condition, roughly corresponding
to raw-error ranking, participants reported attributions to be between “slightly useful” and “not
at all useful” (1.29-2.14). Lastly, attributions showing all 34 features were reported as only
“slightly useful” (2.43) by participants.

Participants mentioned several considerations regarding attribution accuracy and quantity of
information. P1 and P3 generally preferred having more information available to the operator.
P7 preferred seeing less information, as having too many false positives would require too much
effort to investigate. PS5 and P6 said that operators and organizations would be unlikely to trust
models with high error rates. P2 and P4 explicitly weighed the tradeoff between error rates and
the amount of information shown:

A balanced trade-off is needed. Often having [a] list of max 10 [sensors] with minimal error rate is
more useful than having less with high error rate. Depends on the needed follow-up testing effort to
identify the one culprit finally. —P4

These results suggest that attributions could help ICS operators respond to anomalies, even
without perfect accuracy. Attributions could provide a starting point for operators when investi-
gating anomalies; for this use case, operators reported that an attribution method that performs
as well as our proposed ensemble method would be moderately helpful, and preferred to see
attribution scores for the top 10-20 features to balance accuracy and the amount of information
shown.

Finding 11: ICS operators are likely to find our current best-performing attribution
methods for anomaly detection models to be moderately useful when responding to in-
cidents, even if the single manipulated sensor or actuator cannot be identified with high
accuracy.

5.6 Discussion and recommendations

In this section, based on our findings, we provide recommendations for researchers and practi-
tioners to use attribution methods for ICS anomalies.

5.6.1 Recommendations for researchers

Evaluate attributions on a diverse set of complex ICS attacks. The accuracy of attribution
methods depend heavily on ICS attack properties (Section[5.4.2). Despite the wide range of
potential attack strategies, public ICS datasets predominantly contain high-magnitude, constant-
valued manipulations [9} 69], and prior work evaluates attributions on only a small number of

52

attacks from these datasets [82, [101]. When developing ICS anomaly detection and attribution
methods, evaluations should be performed on a complex and diverse set of ICS attacks. This
would ensure that attributions generalize across attack strategies and perform well on attacks
that are most difficult to attribute with currently existing methods (low-magnitude, categorical-
actuator-based attacks).

Design attribution methods specifically for ICS anomaly detection. When tested on full
ICS datasets, we found that prior attribution strategies performed less well than previously sug-
gested, and that our adapted ML-based attribution methods performed less well than anticipated
(Section[3.3.1). Attributing ICS anomaly detection presents unique challenges: attributions are
time-dependent (Section[5.4.1)) and affected by additional feature dependencies (Section [5.4.2)).
Furthermore, the results of our survey (Section[5.5)) suggest that ICS operators would prefer at-
tributions to show a list of 10-20 features to provide context for their investigation, rather than
just the top few features.

Future work that designs attribution methods for ICS should be designed to directly address
the aspects of ICS anomalies that make their attributions uniquely challenging, such as consid-
ering separate designs for sensors and actuators. These methods should also be evaluated with
operators’ preferences and workflows in mind, rather than optimizing solely for top feature ac-
curacy.

5.6.2 Recommendations for practitioners

Consider attributions in workflows beyond the real-time detection case. Although it may
seem most intuitive to compute attributions in real time at the moment when anomalies are de-
tected, this strategy is suboptimal for attribution accuracy.

We found that that attributions are most effective when computed with an input that closely
follows the start of the anomaly (e.g., 25 seconds): this is when the input to the attribution method
includes some data on how the ICS has responded to the initial manipulation, but before the input
is dominated by the manipulation’s side effects (which may increase with time). However, in
many attacks, the anomaly detector does not generate alerts at this ideal point in time.

Furthermore, we found that ML-based attribution methods can identify manipulated fea-
tures, even when the input contains insufficient information for the anomaly-detection model to
generate an alert (Section[5.4.1)). Hence, to overcome the limitations of anomaly detection in
providing timely detection for optimal attribution, we suggest using attribution methods in post-
hoc settings, using tools like a data historian, which would allow the operator to leverage their
domain expertise to explore optimal timings for attributions.

Use an ensemble of attribution methods. The optimal choice of attribution method differs
based on the ICS, anomaly-detection model, and properties of the attack being attributed. A
“silver bullet” solution does not yet exist for attributions of ICS anomalies. We found that, on
average, a weighted ensemble of attributions from raw reconstruction error, saliency maps, and
LEMNA outperforms all individual attribution methods (Section [5.4.4]).

33

5.7 Summary

In this chapter, we evaluate how effective prior and newly adapted attribution methods are when
used to identify the manipulated feature in an ICS attack. We performed the first broad evaluation
of ICS anomaly attribution, comparing across anomaly-detection methods, model architectures,
and datasets. We found that ICS anomaly attribution is dependent on several factors. We examine
these factors and identify challenges related to the timing of anomaly detection and differences
in feature types. We ultimately develop a strategy that uses an ensemble of attribution methods
and show that it outperforms all individual attribution methods.

54

Chapter 6

CYPRESS: a structurally sparse model for
ICS anomaly detection

In Chapter 4] and Chapter [5] I describe work that evaluates general-purpose model architectures
(e.g., CNNs, LSTMs) for ICS anomaly detection and attribution. These approaches are general
applications of models that maintain a uniform internal structure for input that correspond to
different ICS components.

However, in reality, the dynamics of an ICS are not uniform. ICS components contain an
underlying connected structure, based on physical and logical relationships. We hypothesize that
detection and attribution of ICS anomalies can be improved with approaches that learn repre-
sentations that better represent these relationships found in ICS. In this chapter, I describe work
that investigates how spatial and logical relationships found in ICS can be embedded as struc-
tured representations in machine-learning models. These structured representations limit the
relationships that can be learned from data when training a machine-learning model, and makes
anomaly-detection models more efficient and effective for anomaly detection and attribution.

This work described in this chapter is in submission to the 35th USENIX Security Symposium
(USENIX Security 2026).

6.1 Introduction

In Chapter 4] and Chapter[5] we evaluated ML-based anomaly-detection models for detection
and attribution respectively. Many of the best performing approaches were based on deep learn-
ing, which trains models with millions of parameters based on patterns found in ICS process
data [135) 203]]. However, these approaches are inefficient, are difficult to explain, and are sus-
ceptible to evasion attacks. The work described in Chapter 5] found that raw-error rankings were
inaccurate for anomaly attribution; in over 60% of attacks, the feature with the highest error did
not correspond to the ICS component that was manipulated.

Furthermore, factors such as interpretability, robustness, and efficiency are strong require-
ments for adopting anomaly-detection approaches [125]]. Thus, deep-learning-based approaches
may not be suitable for adoption in many ICS settings because of constraints on computational
resources and skilled personnel [24, 146].

55

To overcome these problems, we propose and evaluate CYPRESS, a novel model architec-
ture that learns representations of ICS defined by a structurally sparse set of inter-feature rela-
tionships. Rather than learning relationships from an unconstrained set of possible connections
(as is done for most deep-learning models), CYPRESS learns structurally sparse representations
that limit relationships between input features. CYPRESS requires only light-weight guidance
(i.e., groupings of components) to learn representations of ICS from time-series process data.

Unlike deep learning models, CYPRESS uses far fewer model weights and only learns model
weights that correspond to specified relationships between ICS components. We evaluate the de-
tection performance, attribution performance, and robustness of CYPRESS across attacks from
three ICS datasets, and we show that CYPRESS is more efficient, explainable, and robust than
deep-learning-based approaches for ICS anomaly detection.

6.2 Model architectures for anomaly detection

In this section, we describe model architectures used in prior work for anomaly detection. In
Section[6.2.1l we describe data description models, which are structurally sparse anomaly de-
tection models used in the image domain that serve as a design inspiration for CYPRESS. In
Section we describe relevant model architectures used for ICS anomaly detection and how
CYPRESS differs from these architectures in its internal representations of ICS.

6.2.1 Data description models

In the image domain, a data description model directly predicts scores for every input feature
(i.e., pixels), which can then be used for anomaly detection [[117, [142]. Data description models
are structurally sparse—only a limited and fixed set of inputs can affect each output. Deep
support-vector data description (Deep SVDD [142]) learns a sparse, compact hypersphere in its
output layer that computes scores for input features, and fully convolutional data description
(FCDD [I117]) learns sparse convolutional kernels that compute scores for input image pixels.

Table 6.1: ML model architectures used in prior work for ICS anomaly detection, and how they represent (i) time
relationships and (ii) sensor and actuator relationships.

d actuat
Time relationships Sensor and actuator

relationships

DNN [4] ‘ Fully connected ‘ Fully connected
CNN [102] .

GRU [109] | decﬁ‘;n:(;r:‘tlr‘i‘:uz Fully connected

LSTM [135] | P

GDN [43]] Constrained by Constrained by

FSN [77] | pre-defined structure weight pruning

CYPRESS Constrained by Constrained by

(ours) | pre-defined structure | pre-defined structure

56

Prior work: 2D-CNN Prior work: FCDD Prior work: FSN Our work: CyPRESS

(dynamic, unstructured graph) (sparse, structured graph)
Input images Input images ICS process values ICS process values
(1 xw) (1 xw) (d x h) (d x h)

Filter edges

Attention layer

L) Specified graph

(V. E)

1
I
1
1
1
1
] Dynamic
e i I
2-D convolution Enforce 2-D convolution 1 Graph convolution Enforce Graph convolution
(h filters) structure (1 filter) I (d nodes, k filters) (d * h nodes, 1 filter)
1
1
1
1
1
1

Output layer Output layer
(1xwxh) (kx1)

q . / SO / Predicted values / Predicted values /
Predicted values Image heatmaps dx I @~ 1)

Figure 6.1: A comparison of the internal structures of CNNs, FCDD, FSNs, and CYPRESS (from left to right).
In the image domain, FCDD is a structured alterative to CNNs and only learns relationships between neighboring
pixels end-to-end. Similarly, in the ICS domain, CYPRESS is a structured alternative to FSNs that relies only on
graph convolutions, ensuring that only a structured set of inter-feature relationships are learned.

SVDD and FCDD constrain connections between input features and output scores to those within
a structurally sparse set. For example, when FCDD predicts scores for each pixel that describes
how that pixel contributes to an anomaly, each output pixel’s score is only influenced by its
neighboring input pixel values.

We propose that data description models contain properties that are desirable for ICS anomaly
detection, and so we design CYPRESS with similar assumptions. We assume that each predicted
process value should only be influenced by a limited set of inputs from contextually relevant pro-
cess values. Unlike deep-learning models, which learn weights for dense, fully connected repre-
sentations, CYPRESS learns structurally sparse representations that correspond to the physical
and logical relationships present in ICS.

6.2.2 Models used for ICS anomaly detection

In this section, we describe ML models used in prior work for ICS anomaly detection, and
we compare how these models internally represent inter-feature relationships learned from ICS
process data. Within the two-dimensional, d-by-h input of these ML models, there are two types
of relationships between features that can be learned: component relationships (i.e., connections
between sensors and actuators in d dimension) and time relationships (i.e., connections between
timesteps in ~ dimension). In Table[6.1l we compare the ways in which these models used in
prior work represent relationships between ICS features.

Neural networks. A fully connected deep neural network (DNN) connects all input features
to all internal feature representations and learns a full set of weights for each of these connec-
tions [4]. Thus, the model can learn any relationship between any input features, leading to
spurious correlations.

57

Sensors and Programmable

Actuators Logic Controllers
SCADA
0o0]--- Training CyPRESS Anomaly
g & = Data Detection Model

> S
| Step 1: Define component :@; ‘ E Step 2: Learn model
relationships (Sec. 6.3.1) - —-_-_-="_ 1 weights (Sec. 6.3.2)

Figure 6.2: An illustration of the graph specification and training processes for CYPRESS. First, in step 1 we
define a set of component relationships from the ICS, such as all components that share a PLC, and use this set
to specify a fully connected, time-aware graph (described in Section[6.3.1)). Then, in step 2 we use this specified
graph to train CYPRESS, which learns the strengths of these connections from process-level training data (de-
scribed in Section [6.3.2)).

1-D time constraints. Much like their traditional 2-dimensional image-based counterparts [[103],
1-dimensional convolutional neural networks (CNNs) use convolutional kernels to constrain re-
lationships learned along the i dimension; by doing so, CNNs only learn relationships between
neighboring timesteps [[102]. Models based on gated recurrent units (GRUs) and long-short-term-
memory units (LSTMs) enforce similar constraints along the h-dimension [[109, 203]. Although
these models limit which time-series relationships are learned, they are unconstrained in the d
dimension, which means that they can learn any relationship between sensors and actuators. In
Section we empirically validate the presence of spurious relationships between components
in these models.

Graph neural networks. Graph decision networks (GDNs [43]) and fused sparse autoencoder
graph networks (FSNs [77]) are sparse models used in prior work for ICS anomaly detection.
GDNs and FSNis train an attention layer and use its top k£ weights for inference, which constrains
component relationships in an unstructured way [43, [77]. However, these attention layers are
fully connected, so although only a sparse set of component relationships is used for inference,
the set of potential component relationships that can be learned is unconstrained. The only way
to enforce sparsity into GDNs and FSNs is by explicitly specifying the value of the parameter
k, which defines the number of connections (i.e., inter-feature relationships) that can be learned
for each feature. In Section[6.4] we show that, despite being sparse, GDNs and FSNs are still
susceptible to learning spurious relationships.

58

6.3 CYPRESS: Cyber-Physical Representations with Sparse
Structures

In this section, we describe a new model architecture that is sufficiently sparse to avoid learning
spurious correlations but with enough capability to learn the feature relationships essential for de-
tecting ICS anomalies. We call our model architecture CYPRESS (Cyber-Physical REpresenta-
tions with Sparse Structures). In contrast to other models used in prior work, CYPRESS enforces
structured constraints along both the time dimension and the component dimension (shown in
Table[6.1) with graph convolution layers. Figure[6.I] shows a comparison of CYPRESS with
other models. We note in particular that CYPRESS does not use any fully connected layers,
meaning that all of its learned representations are structured by graph convolutions.

Defining a CYPRESS model requires a specified set of relationships between input features.
In Section[6.3.1] we describe strategies for manually specifying these relationships or automat-
ically generating them from process data. In Section[6.3.2] we then describe our method for
training CYPRESS, which learns structurally sparse representations of ICS based on these de-
fined relationships. Figure [6.2] shows an overview of these processes.

6.3.1 Specifying inter-feature relationships

Much like how FCDD uses convolutional layers to represent relationships between input pixels,
CYPRESS uses graph convolution layers to represent relationships between process-level input
features along the time and component dimensions. These graph convolution layers are defined
by a set of inter-feature relationships, and in this section we describe how such inter-feature
relationships are specified.

Component relationships. We first describe how the relationships between components (i.e.,
d sensors and actuators) are represented in CYPRESS. Similarly to prior work [43] [77], we
represent each component as a node in a connected graph, and we represent relationships between
components as directed edges between these nodes; these relationships can be physical (e.g.,
the flow sensor of a pipe and the level sensor of the tank that the pipe flows into) or logical
(e.g., a sensor value that is used by a PLC to change an actuator). Component relationships
can be manually specified or automatically generated; we suggest several methods for defining
them in Section and evaluate them in Sections Figure [6.2]illustrates how these
component relationships could be specified by defining edges between all sensors and actuators
that share a common PLC.

Time relationships. Once we create a graph that represents the relationships between compo-
nents, we translate this graph into one that includes time relationships to account for CYPRESS’s
input history £ (i.e., we convert a graph of d nodes into one with d x h nodes). We translate each
component relationship d; — d; to a temporal relationship d;; — d;;41 for h timesteps. For
example, translating a component relationship across 10 timesteps creates nine distinct edges in
the time-relationship graph (e.g., [d; — dj| to [dio — dj1,d;i1 — djo,...,dis — d;o]. Once all
component relationships are translated into time relationships, we use the d x h graph to define

59

graph convolution layers in CYPRESS, which learns weights only for the nodes and edges in
this graph.

6.3.2 Learning weights in CYPRESS

For the d x h graph, we define a node weight v; for each graph node, and we define an edge
weight w; ; for each edge that defines the relationship strength between a pair of graph nodes
(7,7). These weights are used during inference in a message passing algorithm often used in
graph-convolution layers [155, [182], which aggregates input process values x, node weights v,
and edge weights w across node neighbors N (i) to predict an output process value x:

-y e
]eN \/’ N ‘ \/| N

Since CYPRESS uses a generic message passing algorithm used for graph convolution lay-
ers, CYPRESS is fully differentiable and can be implemented with off-the-shelf libraries for
graph convolution. CYPRESS matches the input and output structure used by other model ar-
chitectures for ICS anomaly detection (described in Section[6.2.2)) and can therefore also be
trained with reconstruction-based losses.

CYPRESS is sparse, as it learns weights for graphs with only a limited number of edges,
and CYPRESS is structured, as it only learns weights defined by this graph, and no nodes or
edges are created during training. Effectively, CYPRESS only learns a fixed set of weights from
ICS process data, setting an upper bound on the number of inputs connected to each predicted
output.

Next, in Section 6.4, we show that CYPRESS models produce outputs that are sparser and
more accurate for attributing input manipulations, compared to deep-learning models. Further-
more, in Section[6.5] we show that CYPRESS is more efficient than deep-learning models such
as GRUs and LSTMs. CYPRESS learns fewer parameters by several orders of magnitude, and
performing inference with CYPRESS is up to 50X faster. .

6.4 Analyzing spurious relationships learned by ICS anomaly-
detection models

Deep-learning models based on fully connected model architectures, such as CNNs, GRUS, and
LSTMS, learn dense representations of ICS. However, one problem with fully connected neural
networks is that they are susceptible to spurious correlations—relationships learned from data
that are not inherent to the underlying task [124} [197]]. In practice, these misleading predictions
can lead to errors in detection and diagnosis, as features that are not related to an underlying
anomaly will appear to be anomalous.

To measure the prevalence of spurious relationships in ICS anomaly detection models, we
design a counterfactual benchmark test. In our counterfactual test, we perform a structured set
of perturbations on benign input data. We first take a time-series segment of input data from
training data, feed it to the reconstruction model, and record the model’s output. Then, we take

60

1) Generate prediction on benign input _|_> Prediction on original input

Sensors + actuators — Anomaly 3) Compare:
Detection - Number of changed features
I Sensors + actuators —_— Model — - Feature with highest difference
T—2) Perturb one input, generate new prediction —> Prediction on perturbed input

(a) Overview of the steps used in our counterfactual test: we collect a benign input and its corresponding predic-
tion (step 1); we perturb one input feature and generate a new prediction (step 2); and we compare the two predic-
tions and calculate their difference (step 3). We measure the number of changed features and if the feature with the
highest difference matches the feature that was perturbed.

2-layer NNs 4-layer NNs CyPRESS

CNN BRI CNN CRIVIERN Deg=1{439 8.63 354 91 91 751 259 239

GNNs

GDN{ 4.7 9.97 20.0
SEXIRI Deg=2{9.46 (249 8.44 222 20.8 7.51 6.95 4.56

LSTM LSTM CRNVERN Deg=3 |13.3 7.52 6.97 7.23
\{!% //,\/Q //%Q S S ,
A F&FESS F&FEFS F LSS S S
B R O NV RO SN S P &
RNV R NG CIRA @

(b) The average number of features changed from our counterfactual tests for various models.

2-layer NNs 4-layer NNs CyPRESS

CNN{0.12 019 0.14 012 CNN{0.09 0.12 0.1 0.07

GNNs

GDN{0.44 0.36 0.32

GRU{0.24 0.13 0.18 0.33 GRU0.08 0.05 0.04 0.06

FSN{0.02 0.04 0.02

LSTM10.38 0.35 0.14 0.06 | I.STM{0.05 0.06 0.06 0.07

7 v ‘ ‘
NN AN >
¥y FFESS S KOS S &S
NN A SN o N N
RN GRS NI SIE @

(c) Match rates from our counterfactual test for various models.

Figure 6.3: We perform a counterfactual test for learned spurious relationships: given a benign input, we produce
counterfactual input and observe the difference in prediction. Our test reveals that most state-of-the-art forecasting
models fail to make predictions that (i) are sparse in change and (ii) align with input manipulations.

the input data segment, select a single input value, and increase it by three standard deviations
(i.e., a 99.7th percentile event in the standard, normal distribution). We then feed the perturbed
input data segment to the model again and compute the difference between the original output
and the new output on the perturbed data. After repeating across the full space of possible model
inputs, we compute the average for (i) the number of features that change after one perturbation
and (ii) the rate at which the feature with the highest difference matches the feature that was
originally perturbed (i.e., match rate). Figure [6.3a shows an overview of how our counterfactual
test is performed. Since the predominant paradigm is to compute reconstruction errors based on
model predictions, a desirable model should produce an output with high reconstruction errors
for the feature that was originally perturbed.

We compute counterfactuals across a selection of state-of-the-art models from prior work,
trained on the TEP dataset (using the methodology described in Section[6.3] For CYPRESS,
across various configurations, such as degree of connection and graph specification (e.g., man-

61

ual, PLC-based, covariance-based, etc.), CYPRESS outperforms baseline models on our coun-
terfactual test. Figure shows the match rate of our test; we find that for graph-based models
(i.e., GDN [43] and FSN [77]) and deep-learning models (i.e., CNN [102], GRU [109]], and
LSTM [203]), there are relatively few cases in which the feature with the highest difference
matches the original manipulation. For all models, less than 40% of all tests result in a match,
and many models have match rates below 10%. In contrast, CYPRESS produces outputs that
match at higher rates, with many models achieving a match rate above 60%.

Figure shows the average number of features that are changed after our counterfactual
test; with GDNSs, the number of features that can change is defined by the hyperparameter £,
which defines the number of edges that are extracted from the attention weights to define the
graph convolution. For all other models, all 53 features (out of 53 possible features in TEP)
change. Whereas all baseline models produces outputs in which every output feature changes
value, CYPRESS produces outputs in which the changes in output are localized to far fewer
features. CYPRESS upper bounds the number of features that can change from any given in-
put and uses fewer trained parameters; thus, CYPRESS is less susceptible to learning spurious
relationships from data.

6.5 Evaluation setup

In this section, we describe how we implement baseline models (Section[6.5.1)), and how we
implement CYPRESS (Section [6.3.2)).

6.5.1 Baseline models

As a baseline for our evaluation, we implement and train a variety of models used in prior
work for anomaly detection, including lightweight ML models (AR [73, [179], GeCo [190]),
deep-learning models (CNNs [102], GRUs [109], and LSTMs [203]), and graph-based models
(GDN [43], FSN [77]).

We train models on the SWaT [69], TEP [23, 48], and CTown [|54, |128]] datasets (described
in Section2.2)). All models are trained with unsupervised learning, which means that they are
trained only on benign data from normal ICS operations. We define z; as the full vector of d
process values at a given time ¢. Given an input sequence of process values (z;_1, y—9, ...Z¢—p),
we train each model F'() with a forecasting task, which predicts the next vector of process values
and minimizes the mean-squared-error L2 loss between the observed process values and their
prediction:

ZEQ = Fw(fEt—la T2, ~~xt—h)

w* = argmin ||z, — 2}||?
w

To train and implement GeCo models, we use the code provided by its original authors [190].
To implement the various baseline models, we use implementations provided by the original
authors for GDNs and FSNs [43, [7/7], or we implement the models ourselves by using the pre-
defined layer types in PyTorch for AR, CNNs, GRUs, and LSTMs. We train multiple instances

62

of each model across multiple hyperparameters, varying the number of layers and the number of
units per layer for CNNs, GRUs, and LSTMs, or varying the connectivity factor k£ for GDNs and
FSNs. We train all models with an input history of 10 timesteps. Following our methodology in
Chapter 4] we train each model with the Adam optimizer for 50 epochs on 80% of the benign
dataset, use 20% of the benign dataset to compute validation error for early stopping, and train
five models for each set of model hyperparameters to account for training variance. In all of our
reported results in Section[6.6] we report the average across these five models.

6.5.2 CYPRESS

Like the baseline models, we design and implement CYPRESS for a forecasting task: we train
CYPRESS to predict the next process-value vector given an input history of the 10 previous pro-
cess values. We implement CYPRESS based on our description in Section[6.3.1] using graph
convolution layers from the Pytorch Geometric libraryﬂ CYPRESS is parameterized by the
number of graph convolution operations that are performed during inference (i.e., the graph de-
gree) and the method used for graph specification; we propose a variety of manual and automatic
methods for graph specification.

Manual graph specification. We first define CYPRESS model with manually specified graphs
(CPR-Manual). We create graph representations of CTown and TEP by inspecting the PLC logic
in their simulators and by inspecting the descriptions of their physical processeﬂ We manually
create a graph representation of SWaT based on prior publications that describe the connectivity
of different components and the inputs and outputs for each PLC [7,69].

Automatic graph specification. To automatically define graphs for CYPRESS, we draw in-
spiration from the taxonomy provided by Erba et al. [52], which defines the types of inconsis-
tencies that should be detected by ICS anomaly-detection models. For statistical consistency, we
define edges based on the top-5 or top-10 features with the highest covariance observed in the
training data (CPR-Cov5 or CPR-Cov10) or based on the top-10 highest-valued attention weights
from our trained graph-based models (CPR-GDN and CPR-FSN). To test for spatial consistency,
we define edges based on predefined groups of PLCs and subprocessef] (CPR-PLC and CPR-
SubProc). Lastly, we compare our automatic strategies to an invariant-inspired approach, in
which we define edges based on the features that are selected for each function template in the
pre-trained GeCo model (CPR-GeCo) [190].

Detecting anomalies. To perform anomaly detection with CYPRESS (and with baseline mod-
els), we must define a threshold for predicting an anomaly based on reconstruction errors. In

'https://pytorch-geometric.readthedocs.io/en/2.6.1/

ZPLC logic is explicitly defined in these simulators, so we can precisely create edges based on logical rela-
tionships. However, the physical relationships are estimated from a process diagram in TEP and from EPANet
configuration files in CTown.

3For CTown and SWaT, subprocess groups and PLC groups are identical. For TEP, we define subprocess
groups based on the names of components in the simulator.

63

https://pytorch-geometric.readthedocs.io/en/2.6.1/

this work, we consider two commonly used strategies for thresholding: MSE-based thresholds
and CUSUM. To use an MSE-based threshold, we compute the anomaly-detection model’s per-
feature reconstruction error on the validation data. Following prior work, we then use each
feature’s maximum validation error as a detection threshold [[102,[135]]. As an extension to MSE-
based thresholds, other prior works use the cumulative sum of errors (CUSUM) (32,1179, 190], a
stateful detection thresholding strategy. For each timestep ¢, we compute the absolute reconstruc-
tion error e; = |z; — x| for each feature and compute its rolling cumulative sum during testing
CUSUM; = max(0, CUSUM;_; + e; — 0). § is defined as the drift parameter, which serves as
a constant decay factor for the accumulated CUSUM errors. Based on implementations used in
prior work, we set the CUSUM detection threshold using benign validation data: we set the drift
parameter ¢ to the average reconstruction error on validation data plus one standard deviation,
and we set the detection threshold per feature to the maximum CUSUM value on the validation
dataset.

Cost of CYPRESS. After implementing CYPRESS, we compare the size and computational
cost of CYPRESS compared to baseline models.

Table 6.2: On left, the number of trainable parameters for each model trained on the TEP dataset. Models such

as AR and GeCo use fewer features (i.e., 200—600) and deep-learning models use more features (i.e., 77K—-16M)
compared to CYPRESS, which uses 2000-6000 features. On right, the amount of time taken to perform a single
inference pass (based on the TEP dataset). A single inference pass with CYPRESS (0.43-0.81ms) is almost al-
ways faster than any deep-learning model (0.8-22.3ms) and is ~ 5—-50x faster than the best-performing GRU and
LSTM models.

‘ Inference Time (ms)

Trainl:l;ll?ﬁzi:;rfleters GeCo 0.08
AR 1.42
GeCo 203
AR 583 ‘ Deg=1 Deg=2 Deg=3
Manual 0.43 0.55 0.81
Sl\lfgrr’l::cl gégi SubProc 0.47 0.59 0.71
’ PLC 0.44 0.58 0.66
PLC 2,466
Covs 3348 CYPRESS Cov5 0.43 0.56 0.68
CYPRESS ’ Covl10 0.47 0.62 0.73
Covl10 5,598
GeCo 2808 GeCo 0.43 0.56 0.76
GDN 5,841 GDN | 046 062 074
ESN 5.841 FSN 0.45 0.62 0.74
GDN 4673 k=35 k=10 k=20
FSN 1.5M GDN 2.46 2.50 2.66
128-unit 256-unit 512-unit FSN 8ol 799 8.23
2-layer 77K 250K 308K ‘ 128-unit 256-unit 512-unit
CNN 4-layer 176K 647K 2.5M 2-layer 0.80 0.88 0.96
8-layer 374K 1.4M 5.6M CNN 4-layer 0.97 1.14 1.40
2-layer 176K 647K 2.5M 8-layer 1.38 1.56 228
GRU 4-layer 374K 1.4M 5.6M 2-layer 2.45 2.18 2.73
8-layer 770K 3.0M 11.9M GRU 4-layer 3.00 3.61 4.63
2-layer 233K 858K 33M 8-layer 520 >87 811
LSTM 4-layer 497K 1.9M 7.5M 2-layer 15.04 15.44 19.54
8-layer 1.0M 4.0M 15.9M LSTM 4-layer 14.65 15.58 18.95
8-layer 15.22 22.26 22.23

64

Table 6.3: The average F1 score across all attacks on CTown (left), TEP (middle), and SWaT (right) for all the
anomaly-detection models evaluated in this work. F1 scores are averaged across attacks and across five repeated
trials. We highlight models that are “on par” (if it falls within 0.03 of the maximum score for that dataset). Various
configurations of CYPRESS, GRUs, and LSTMs perform best across datasets.

CTown TEP SWaT
AR 0.756 0.819 0.772
GeCo 0.566 0.819 0.788
Deg=1 Deg=2 Deg=3 Deg=1 Deg=2 Deg=3 Deg=1 Deg=2 Deg=3
Manual 0.736 0.793 0.803 0.848 0.834 0.876 0.748 0.767 0.622
SubProc - - - 0.792 0.829 0.820
PLC 0.761 0.907 0.895 0.748 0.777 0.775 0.758 0.766 0.771
Cov5 0.747 0.892 0.930 0.817 0.835 0.831 0.237 0.788 0.791
Cov10 0.761 0.901 0.935 0.869 0.819 0.844 0.784 0.795 0.804
GeCo 0.742 0.779 0.808 0.863 0.878 0.856 0.770 0.803 0.799
GDN 0.792 0.897 0.830 0.750 0.728 0.794 0.771 0.805 0.803
FSN 0.758 0.891 0.931 0.779 0.755 0.728 0.783 0.786 0.739
k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20
GNNs GDN 0.897 0.904 0.879 0.689 0.669 0.686 0.374 0.779 0.771
FSN 0.878 0.902 0.885 0.780 0.763 0.785 0.785 0.781 0.782
128-unit ~ 256-unit 512-unit 128-unit 256-unit 512-unit 128-unit 256-unit 512-unit
2-layer 0.846 0.873 0.759 0.671 0.647 0.613 0.741 0.716 0.741
CNN 4-layer 0.862 0.858 0.822 0.745 0.665 0.670 0.736 0.593 0.729
8-layer 0.872 0.688 0.721 0.722 0.760 0.706 0.766 0.769 0.757
2-layer 0.936 0.943 0.940 0.766 0.757 0.791 0.799 0.798 0.801
GRU 4-layer 0.942 0.944 0.945 0.714 0.593 0.550 0.797 0.802 0.764
8-layer 0.883 0.902 0.924 0.773 0.752 0.764 0.794 0.771 0.789
2-layer 0.944 0.945 0.945 0.730 0.833 0.857 0.795 0.799 0.799
LSTM 4-layer 0.942 0.939 0.944 0.774 0.743 0.685 0.795 0.812 0.806
8-layer 0.919 0.938 0.938 0.789 0.784 0.755 0.795 0.801 0.799

Table 6.2l shows the number of trainable parameters and the average inference time for each
model used in this work. To measure the inference time required by various ML models, we
perform an experiment with a commodity desktop (Intel Xeon E-2136 3.30GHz CPU, 32 GB
RAM); we measure the average time taken to perform a single inference pass with the model,
across five trials. Overall, CYPRESS is far more efficient than GRUs and LSTMs; it uses over
1000x fewer model parameters and performs inference up to 50x faster.

6.6 Evaluation results

We first evaluate the detection performance of CYPRESS and baseline models (Section [6.6.T)).
Next, following the methodology used in prior work [60], we evaluate the attribution perfor-
mance of CYPRESS and baseline models (Section[6.6.2). Finally, we evaluate how CYPRESS
compares to baseline models against attackers with increased system access and stealthier attack
strategies (Section [6.6.3)).

65

Table 6.4: The average range-F1 scores across all attacks on CTown (left), TEP (middle), and SWaT (right) for all
the anomaly-detection models evaluated in this work. Range-F1 scores are averaged across attacks and across five
repeated trials. We highlight models that are “on par” (if it falls within 0.1 of the maximum score for that dataset).
Various configurations of CYPRESS, GRUs, and LSTMs perform best across datasets.

CTown TEP SWaT
AR 0.879 0.617 0.146
GeCo 0.852 0.656 0.262

Deg=1 Deg=2 Deg=3 Deg=1 Deg=2 Deg=3 Deg=1 Deg=2 Deg=3

Manual 0.855 0.898 0.883 0.756 0.743 0.752 0.151 0.155 0.150

SubProc 0.721 0.564 0.689 0.719 0.702 0.720 0.189 0.189 0.154

PLC 0.721 0.564 0.689 0.537 0.688 0.735 0.189 0.189 0.154

CYPRESS Cov5 0.799 0.718 0.661 0.625 0.717 0.717 0.159 0.175 0.173
¥ Cov10 0.728 0.647 0.604 0.698 0.751 0.697 0.157 0.138 0.122
GeCo 0.801 0.675 0.760 0.722 0.729 0.750 0.139 0.145 0.129

GDN 0.774 0.625 0.696 0.658 0.639 0.731 0.170 0.104 0.113

FSN 0.746 0.656 0.679 0.738 0.714 0.701 0.154 0.154 0.144

k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20

GNNs GDN 0.635 0.671 0.745 0.625 0.597 0.511 0.177 0.235 0.229
FSN 0.490 0.551 0.450 0.492 0.540 0.450 0.197 0.171 0.172

128-unit 256-unit 512-unit 128-unit 256-unit 512-unit 128-unit 256-unit 512-unit

2-layer 0.882 0.793 0.583 0.591 0.567 0.525 0.312 0.225 0.269

CNN 4-layer 0.617 0.605 0.629 0.693 0.579 0.593 0.261 0.202 0.226
8-layer 0.824 0.579 0.728 0.461 0.487 0.535 0.235 0.197 0.171

2-layer 0.622 0.869 0.702 0.736 0.736 0.734 0.383 0.369 0.372
GRU 4-layer 0.868 0.823 0.968 0.660 0.682 0.656 0.398 0.362 0.299
8-layer 0.641 0.823 0.789 0.732 0.600 0.648 0.272 0.250 0.250

2-layer 0.862 0.931 0.859 0.669 0.811 0.838 0.357 0.356 0.345
LSTM 4-layer 0.894 0.872 0.968 0.763 0.759 0.806 0.310 0.338 0.326
8-layer 0.883 0.977 0.976 0.573 0.504 0.618 0.263 0.284 0.316

6.6.1 Anomaly detection

We first compare the anomaly-detection performance of CYPRESS with the performance of
baseline models. For each dataset and each trained model, we use both the MSE-based and
CUSUM thresholding strategies described in Section [6.5.1Ito predict time-series anomalies from
real-time process data. Similar to prior work, we find that the performance of thresholding strate-
gies varies and that the best choice of thresholding strategy is not consistent across datasets [32,
59,1107, 1179, 1190]. We use a per-feature CUSUM thresholding strategy for the CTown dataset
and a per-feature MSE-based thresholding for the TEP and SWaT datasets.

Results with point-based metrics. Table 6.3 shows the point-F1 scores for all model configu-
rations on each dataset.

Although many of the best F1 scores for each dataset (e.g., 2-layer, 512-unit LSTM for
CTown; the 4-layer, 256-unit LSTM for SWaT) are produced by deep-learning models, many
configurations of CYPRESS can perform similarly as well or even better (e.g., CPR-GeCo on
TEP). We define a model as “on par” if it falls within 0.03 of the maximum F1 score for the given
dataset (highlighted in Table [6.3]); many configurations of CYPRESS, GRUs, and LSTMs are on
par with the best-performing models. In particular, multiple configurations of CPR-Manual,

66

CPR-Cov5, CPR-Cov10, Cov-FSN, and CPR-GeCo achieve scores that are on par with deep-
learning models.

CYPRESS uses far fewer parameters than GRUs and LSTMs by several orders of magnitude
(i.e., thousands of parameters compared to millions, as shown in Table[6.2]). Despite using far
fewer parameters, CYPRESS can detect anomalies with performance that is on par with larger,
more complex anomaly-detection models.

Finding 12: CYPRESS achieves comparable detection performance to deep-learning-
based approaches while using up to 1000 fewer trained parameters.

Results with range-based metrics. Table[6.4] shows the range-F1 scores (based on our defi-
nition in Section4.3.2) for all models, configurations, and datasets. Similar to our findings in
Chapter 4], we find that there is a higher variance across range-F1 scores, and that many mod-
els’ range-F1 scores are lower than their corresponding point-F1 scores. As with our analysis
in Section[6.6.1l we define a model as “on par” if it achieves a score that is within 0.1 (rather
than 0.03, due to higher variance) of the maximum score for that dataset, and we highlight these
scores in Table[6.4l In general, large deep-learning models such as LSTMs generally perform
best, and some configurations of CYPRESS can perform similarly.

We make some additional observations regarding CYPRESS and anomaly detection with
range-based metrics. First, we note that our results are in line with prior works [83, (190, [191]
which find that point-based metrics like the F1 score can be misleading; several models with high
F1 scores produce relatively low range-F1 scores. This is caused by the fact that, despite using
time-series inputs, ML-based anomaly detection models are not trained to make contiguous pre-
dictions, and additional thresholding techniques are often required to encourage such behavior.
Second, we note that our results are also in line with prior work that finds that anomaly-detection
on the SWaT dataset is unstable in practice [[102, 107, [175, [181} 203]]; because all attacks on
SWaT are performed within one single ICS execution (as opposed to CTown and TEP, in which
each attack is performed in a unique execution), several prior works have noted issues with fea-
ture drift, data cleaning, and mislabeled anomalies as a result. We emphasize that these issues
with the SWaT dataset affect all methods (i.e., CYPRESS and baselines), and that methods for
feature cleaning and optimal thresholding tuning are not the focus on this work.

6.6.2 Anomaly attribution

Next, we compare the anomaly-attribution performance of CYPRESS to that of GRUs and
LSTMs (the best performing models for detection), using the AvgRank metric and methodology
from Chapter[5] Since each model detects each anomaly with different timings and accuracies
and we want to compare attribution performance systematically, we compute attributions based
on the ground-truth start of each anomaly. As suggested by our findings in Chapter [5 this sim-
ulates a setting in which attributions are used for post-hoc anomaly diagnosis. For each labeled
attack in each dataset, we capture the first time-series window of anomalous data and use the re-
construction errors from each anomaly detection model as an attribution score. Figure [0.4] shows

67

AvgRank by Feature AvgRank by PLC

5
4
3
2
1
0
5
9 4
~ 3
M6
= 2
3 1
0 0
8 5
6 4
=
© 3
=4 2
97]
2 1
0 0
HNOAHNMENO=N®O 333333333 535333333 HNOENOEHNM=EN®O 3333333353 333333333
L o | | T T glﬁggggﬁﬁu‘%ﬁ ﬁgﬁﬁu"éﬁﬁgﬁ L 28§2%§£%2 2%§£%22£§
TTOTUTTTUTTTTTT QR NDND QDD = Q0 TTOTTTTTUTTTT (RN ND QDD = N0
TTITRLLRSSS QR Q Lt Lt b Lot b L L TTTLLVOOSRRQ Lt Lt L bt L L L
:::gggHHHUUU NNNSFFO00 NANNT T <000 3332220070000 NANSIFIFOO0D0 NNNT S T 00D
282 5> %00 0 Z222%2%%%%20202
SEE°PCC0388000 23800333000
=22 =22
CyPRESS GRU LSTM CyPRESS GRU LSTM

Figure 6.4: The AvgRank (lower is better) based on individual features (left) and based on PLCs (right) using each
model’s reconstruction errors for CTown (top), TEP (middle), and SWaT (bottom). Lower scores indicate that the
model’s outputs are more accurate for identifying the underlying manipulated component or PLC in an anomaly.
CYPRESS (in orange, on left) produces lower rankings than GRUs and LSTMs (in blue, on right).

the average ranking of the attacked feature (top of each subfigure) and the average ranking of
the PLC containing the attacked feature (bottom of each subfigure) for CYPRESS, GRUs, and
LSTMs for the CTown, TEP, and SWaT datasets (lower is better).

CYPRESS produces attributions with better rankings for attacker-manipulated features. For
instance, the feature AvgRank for CYPRESS on TEP falls within 2.4-2.8, whereas many deep-
learning models produce a feature AvgRank above 5 (e.g., the 8-layer, 512-unit LSTM produces
an AvgRank of 5.9). This trend also holds true for the SWaT dataset (bottom left of Figure [6.4).
We also find that the PLC AvgRanks produced by CYPRESS are lower than those of GRUs and
LSTMs. and the attribution performance is consistent across various CYPRESS configurations.
In other words, the best-performing attributions can be drawn from most CYPRESS models.

CYPRESS also produces attributions that are more consistent, particularly on the TEP and
SWaT datasets. We find that both the feature AvgRank and PLC AvgRank have lower variance
that those from deep-learning models; the maximum and minimum values are shown on the bars
in Figure [6.4]

For CTown, we find that the feature AvgRank of CYPRESS is less consistent, and the at-
tribution performance similar to that of deep-learning models. However, the PLC AvgRank is
much lower, and CPR-GeCo models in particular are the most accurate (e.g., the PLC AvgRank
is within 1.1-1.4).

Figure [6.5] shows the full set of results for all models on the CTown (top), TEP (middle),
and SWaT (bottom) datasets. In general, CYPRESS produces attributions (both when ranking
features and when ranking PLCs) that are more accurate than baseline models.

68

@20
=R
-
@ 10
o)
S NNNNNENARRNNERRANARHARAE NN AN NN AR AN
ol
4
O
|
Q2
ol |1 |1 |1] I || |1 || ||
(a) Full attribution results on CTown.
D 20
5
-
8 10
[,
ol
C)4
|
Ay 2
0,
15
e
= 10
)
©
ﬁ 5
ol
3
O I
2
A 1
0 HANNANNANNANNANN—A=NN—=NN—=HNN KO INOO INOO S5S3383333333 SS583833333 33383333333
L (O (e (| ({1 1 1 <E% Il — N Il =N ggﬁg%gg%z g%ggggggﬁ ggﬁg%gg%z
i toooeeeEsseetorrrry & “LLE SLL SRBSRESRE SRESREIAE SQBTabnan
R e R S S S e - T ANATIIEDS NNATIIERE NNATTIEDS
EEEAAArMAAnSS833233383000RK A
EEREICICIE] LCLOSsS53800o
SE5377
CyPRESS GDN FSN CNN GRU LSTM

(c) Full attribution results on SWaT.

Figure 6.5: For all three datasets (CTown at top, TEP at middle, SWaT at bottom), we compute the AvgRank
(lower is better) based on individual features (top) and based on PLCs (bottom) using the reconstruction errors
produced by various models. Lower scores indicate that the model produces outputs that are better aligned to the
underlying manipulated component or PLC in each anomaly. We find that CYPRESS models (light shading, on
left), produce lower rankings than baseline models (dark shading, on right).

69

Sensors and Programmable
Actuators Logic Controllers

e SCADA Anomaly

<> <= Detection
2 8F] @& [=
=k

== | Al AD &owe

Figure 6.6: An overview of an ICS and the threat models we consider: attacks at the sensor level (#1), attacks at
the PLC level (#2) and attacks that leverage knowledge of the anomaly-detection model (#3).

Finding 13: Compared to the best-performing baseline models, CYPRESS is more ac-
curate when used to attribute anomalies to their manipulated components or manipulated
PLCs.

6.6.3 Robustness to stealthy attack strategies

We evaluate CYPRESS’s robustness to stealthier attack strategies, such as using variable manip-
ulation patterns rather than constant-valued manipulations [60], concealing manipulated values
with replay attacks [52), 54], and using learning-based evasion attacks [33, |54]. For each of
these stealthier attacks, we describe the additional levels of attacker access required, based on
the examples shown in Figure[6.6]

To evaluate performance against stealthier attacker strategies, we must first select against a
set of well-performing models for detection. For different types of model (e.g., CNNs, GRUs,
CYPRESS), we select a well-performing set of models based on the detection results from
Section[6.6.1k we select models with high recall, F1, and range-F1 scores. We note that, since
we do not have access to a simulator for SWaT and only have access to an attack dataset, we are
unable to meaningfully perform replay attacks for evaluation. Thus, we evaluate robustness only
with the CTown and TEP datasets.

Generic replay attacks [52]. We first evaluate against generic replay attacks, which assume
that the attacker replays a subset of benign data to the anomaly-detection model while perform-
ing their attack. For example, an attacker with sensor-level access (€ in Figure [6.6) will con-
currently transmit their harm-inducing values to the physical process while sending stale benign
data to the anomaly-detection model.

To simulate generic replay attacks, we systematically capture and replay benign data for all
attacks in the CTown and TEP datasets, using methodology from prior work. For each baseline,
non-stealthy attack, we perform two types of replay attack: one attack that only replays benign
data from the target component ("Target replay" from location @) in Figure [6.6]), and one attack

70

[Baseline I PLC replay W Baseline I PLC replay

EEE Target replay Concealment EEN Target replay Concealment
1.0
c:UO.E» 150
0.6 A
[&] + 100
Q04 =
Qf‘().z 50
0.0 0
0.5
5 03 o 50 . ‘
o 01 o | r B L lI
§ on| W .--.-‘rgl L
< -03 =50
-0.5
(¢} N o (@] Q o
& ® @‘Z’Q QQé Qcﬁ Qéé 62;9 %&@ & ® cf’o Cooé Q%é cﬁé 0‘?5 %&é\
S i & &
(a) Detection recall on CTown. (b) Time-to-detect (lower is better) on CTown.
I Baseline I PIC replay Sum I Baseline I PLC replay Sum
BN Target replay WM Line BN Target replay WM Line
g "
i e
~ 0.2 .—<g !
0.0 0
0.5 -
'(_,_"U 0.3 4Q_>2
S o s ha Dnmne
-0.1 —
211 -0.3 -1 1 1 -1 L 1 1 .1 1 S0
-0.5 -
PP PSS SO S P o ¢ > & OO
S T &P EC S F & P ¥ S <5 F
& &
(c) Detection recall on TEP. (d) Time-to-detect (lower is better) on TEP.

Figure 6.7: The average detection recall (left) and average time-to-detect (right, lower is better) after performing
a stealthy attack (target replay, PLC replay, concealment, line manipulations, or sum manipulations) against best-
performing models on CTown (top) or TEP (bottom). Absolute values are shown at the top of each subplot and
differences between each stealthy attack and its baseline counterpart are shown at the bottom of each subplot.
Although stealthy attacks cause all models to perform worse, CYPRESS is more effective at detecting stealthy
attacks and produces a smaller performance degradation compared to baselines.

that replays benign data from all features that share a PLC with the target component ("PLC
replay" from location @ in Figure [6.6).

We evaluate anomaly detection models against generic replay attacks and report the change
in recall and time-to-detect (TtD) in Figures[6.7aH6.7b| Compared to most baseline models on
CTown, CYPRESS is more robust to generic replay attacks with only small changes in recall
and faster time-to-detect (e.g., about 50 seconds faster for PLC replay). However, we find that
replay attacks are effective at evading all models trained on TEP, including CYPRESS and deep-
learning models.

71

1.00 1.00
0.75
., 075 [a e
W) 0.50 | ;) 050
<
< 0.25 025 : &
0.00 v u

RS
g

2\9 04@ v c@é Q%é c,éé 0‘29 %&é\ & ,060 Ve ¢ o & \é
& L v > &
@) OQQ" OQQ” @)

(a) Attack success rate for evasion attacks on the CTown (b) Attack success rate for evasion attacks on the TEP
dataset. dataset.

Figure 6.8: The attack success rates (ASR, lower is better) for optimized evasion attacks on the CTown (left) and
TEP (right) datasets against various best-performing models. CYPRESS consistently produces a lower ASR than
GRUs and LSTMs.

Concealment attacks [54]. To perform a concealment attack, the attacker manipulates two
parts of the ICS concurrently, similar to a generic replay attack. Erba et al. provide modified
versions of the attacks in the CTown dataset with concealment [54]]. For each attack, different
strategies such as network spoofing, PLC value spoofing, or a man-in-the-middle attack are used
to conceal the target feature with a different, attacker-determined value; we present all of these
strategies from prior work as a generic category of attack called "Concealment".

We evaluate each anomaly detection model against the provided concealment attacks and
report the change in recall and detection latency in Figures shown in red. Whereas
most baseline models (CNNs, GRUs, LSTMs, GDNs, and FSNs) show a large drop in recall (i.e.,
recall drops by 0.1), the best-performing CYPRESS models only produce a minimal decrease in
recall and reduction in time-to-detect.

Finding 14: Compared to deep-learning models, CYPRESS is more robust to conceal-
ment attacks, maintaining higher recall and faster times to detect.

Variable data injection [60]. (Chapter[5) In contrast to the constant-valued manipulations
performed in our baseline datasets, we also explored the impacts of using variable patterns in
data injection, based on our description in Section[3.4.3] These attacks assumes the same level of
device access as the baseline attacks (€] in Figure 6.6), but replaces the constant-valued manip-
ulation with stealthier counterparts: by either replicating the original sensor noise in the manip-
ulation by adding a fixed value to the original signal ("Sum") or by performing the manipulation
over a prolonged, linearly increasing period ("Line"). Figures show the results on the
TEP dataset. In general, variable data injection attacks are the most difficult to detect; Figure
shows that the recall drops by over 15% for all baseline and CYPRESS models. However, CY-
PRESS is least affected by variable attack strategies: despite comparable decreases in recall,
Figure shows that the CPR-Manual model detects the evasion attacks with the lowest detec-
tion latency (e.g., 19.6 seconds for cumulative sum attacks and 36.5 seconds for line attacks).

Optimized evasion attacks [S3]. Finally, we evaluate the strongest attacker who has read ac-
cess to the inputs and the outputs of the model itself, either by using a passive wiretap or by

72

CyPRESS m AR m GNNs ® NNs ® GNNs ® NNs
1.0 — — 1.0 — — — —
0 0.8 0.8
w0 w0
Bo6 Bo.6
5 5
wn 0.4 wn 0.4
X X
°70.2 °70.2
0.0 2 4 6 8 09 2 4 6 8
of Features

of Features
(b) CDF for PLC-constrained evasion attacks on the

(a) CDF for PLC-constrained evasion attacks on the
TEP dataset.

CTown dataset.
CyPRESS m AR m GNNs ® NNs m AR m GNNs ® NNs
1.0—= —m=—=w = = —
| S == I S ol

0.8 o

0 Y- ‘Z’/ o (7))

%] o - %]

Q L Q

0067 u Q

-MIF :

o4; i ./’ %)

R oa|f/ ®
099 2 4 6 8 10 12 0.9 4 6 8 10 12

of Features

of Features

(c) CDF for unconstrained evasion attacks on the CTown (d) CDF for unconstrained evasion attacks on the TEP

dataset. dataset.

Figure 6.9: The number of features required for successful evasion attacks (lower is better), for the CTown (left)
and TEP (right) datasets and for PLC-constrained (top) and unconstrained (bottom) attacks. Compared to CNNss,
GRUs, and LSTMs, the attack success rate on CYPRESS is lower for most numbers of features, which indicates
that fewer attacks can be performed with this level of access; an attacker must compromise a greater number of

features in order to evade detection.

obtaining a copy of the anomaly detection model (€) in Figure [6.6). From this point of access,
the attacker can search through potential manipulations by iteratively perturbing feature values
and querying the model’s output. The attacker can then repeat this process indefinitely until they
generate an optimal reduction in output MSE or if they determine that no solution exists. In gen-
erating our optimized perturbations, we initially assume that the attacker is still limited to one
point of write access, such as a single PLC (@) in Figure [6.6).

We follow the methodology proposed by Erba et al. [53] to perform optimized evasion at-
tacks. From each attack in each dataset, we sample 20 true positives detected by each model and
attempt to convert it into a false negative by modifying features reported from the compromised
PLC. When modifying features, we assume that the attacker is unable to retroactively manipulate
time inputs, so they must manipulate the entire time-series input for a single feature with a fixed
value. To find these optimal values, we perform a linear scan of 100 candidate values between
the minimum and maximum values observed in the training distribution (i.e., in normal oper-
ation). We then select the feature and value which produces the largest drop in reconstruction
error, before iteratively repeating the search process. We terminate the search if no more drops
in reconstruction error are found after searching through all values in the compromised PLC and

all candidate values.

73

Figure shows the overall attack success rate (ASR) for evasion attacks on models trained
on CTown (left) and TEP (right) respectively. Overall, we find that best-performing detection
models such as LSTMs can be easily evaded, whereas the attack success rate on CYPRESS is
far lower (e.g., on TEP, 89% of true positive samples that were originally detected by the LSTM
are now undetected, whereas only 15% of these samples are evaded for CPR-Manual).

In Figures we show the cumulative distribution functions for the number of fea-
tures that must be compromised for successful, PLC-constrained evasion attacks. Even in cases
where an attacker can successfully bypass CYPRESS, on average, the attacker needs an in-
creased level of access to succeed (i.e., they must compromise and manipulate more compo-
nents), compared to most baseline models. For example, when modifying samples in TEP at-
tacks, 54% of successful PLC-constrained evasions on CPR-GeCo require modifying only one
feature, whereas 90% of successful PLC-constrained evasions on the LSTM require modify-
ing only one feature; When modifying samples in CTown attacks, 48% of successful PLC-
constrained evasions on CPR-Cov10 require modifying only one feature, and 96% of successful
PLC-constrained evasions on the LSTM require modifying only one feature.

Finally, as a final evaluation for robustness, we assume that the attacker gains access to all
PLCs in an ICS in an unconstrained attack. From this level of access, an attacker can trivially
spoof all process values to bypass detection and achieve a 100% attack success rate. For in-
stance, the attacker could replay the entire training dataset. In Figures|6.9cH6.9d, we show the
cumulative distribution functions for the number of features that must be compromised for suc-
cessful, unconstrained evasion attacks. Although we find that sparser models, such as AR and
GNNs, are more resistant to unconstrained evasion attacks (i.e., the attack success rate is low for
a low number of features), CNNs, GRUs, and LSTMs are still far less robust than other alterna-
tives. For example, on the TEP dataset, 53% of successful unconstrained evasions on CPR-GeCo
require modifying only one feature, whereas 90% of successful unconstrained evasions on the
LSTM occur with the same level of access. On the CTOWN dataset, 62% of successful un-
constrained evasions on CPR-Cov10 require modifying only one feature, and 93% of successful
unconstrained evasions on the LSTM occur at this same level of access.

Finding 15: Compared to deep-learning models, CYPRESS is more robust to optimized
evasion attacks; attacks on CYPRESS have lower success rates and require more attacker
effort.

6.7 Future work and limitations

Exploring the interpretability of CYPRESS. Prior work extracts equations from GeCo’s
learned function templates and uses them as an aid for operator interpretation [190]. These
equations follow a similar form to system identification [32, 67], which maps process outputs
to combinations of process inputs in a tractable form. We propose that CYPRESS can be used
similarly—we can convert edge weights used in CYPRESS’s message passing algorithm into
closed-form process-level equations. For example, we can extract the following function tem-
plate from our CPR-Manual model trained on TEP (s1 refers to sensor #1 and a2 refers to actu-

74

ator #2 in the anonymized TEP process)

Ts1,t = Tslt—1 * Uslt—1 * W(s1,t—1)—(s1,t)
+ Za2,t—1 " Va2,t—1 * W(a2,t—1)—(s1,t)

T X1t Usiyt * W(slt)—(sl,t)

Alternatively, this function template could also be substituted or combined with the correspond-
ing process data and weight values to provide additional context for operators:

o1y = (—0.19) - (~1.85) - (0.76)
+(—0.03) - (2.44) - (—2.39)
+(—0.01) % (—0.02) - (—0.02)

A promising area of future work would be to investigate the best methods for converting
anomaly-detection models into interpretable forms, such as determining if operators find process-
level equations interpretable, if operators find graph-based information useful in practice, and if
operators prefer certain types of visualization.

Exploring mixtures of anomaly detection models. In Chapter d]and Chapter [5| we explored
methods for tuning and configuring anomaly-detection methods for different objectives, such as
higher precision, higher recall, faster detection, or more accurate attribution. We found that Cy-
PRESS performs well when applied for attribution in post-hoc diagnosis (Section [6.6.2)) and de-
tects stealthy attacks more quickly than deep-learning models (Section[6.6.3]). Thus, we propose
that CYPRESS can be used in conjunction with other approaches; for example, a deep-learning
model could be used to detect anomalies with high recall in real time and CYPRESS could help
diagnose these detected anomalies. Alternatively, CYPRESS could be used as an additional layer
of defense against evasion attacks, detecting attacks that are missed by deep-learning-based ap-
proaches. We argue that CYPRESS provides useful functions for ICS anomaly detection, despite
not solely achieving the highest F1 and TaF1 scores (Section[6.6.1)). A promising area of future
work would be to explore approaches that use systems of multiple anomaly-detection models for
different objectives, including CYPRESS.

Limitations of using CYPRESS in practice. One limitation of using CYPRESS in practice
is that operators must specify feature groupings for training. We explored several alternatives,
ranging from manual specification of the ICS to automated specification from statistical mea-
sures. In practice, organizations that manage and operate anomaly-detection systems may prefer
certain types of specification, based on their level of ML expertise, data availability, and their
trust in automated methods. We intend for CYPRESS to be a general-purpose solution that
can support various organizational preferences. In Chapter[7, we show that organizations vary
widely in their needs and requirements for ML-based approaches. A promising area of future
work would be to investigate how various forms of guidance for CYPRESS impact deployability
and trust in practice and to investigate ways to better automate ICS specification to further ease
adoption.

75

6.8 Summary

In this chapter, we propose CYPRESS, a novel model architecture for ICS anomaly detection.
Unlike deep-learning-based approaches commonly used in prior work, CYPRESS learns struc-
turally sparse representations of ICS based on inter-feature relationships. These relationships
between ICS components can be manually specified (e.g., from a process diagram) or auto-
matically inferred (e.g., from learned invariants). We show that CYPRESS achieves detection
results that are on par with larger deep learning models while using far fewer trained parameters;
CYPRESS avoids learning spurious relationships and can produce attributions that are more ac-
curate in identifying manipulated components; and CYPRESS is more robust to stealthy evasion
attacks.

76

Chapter 7

Examining practitioners’ perspectives of
ML-based tools for ICS alarms

The other works described in this thesis measure the effectiveness of existing anomaly-detection
approaches (Chapter[d|and [S)) or propose adaptations to them (Chapter[S|and[6)). These works are
based on experimental systems used exclusively in research, rather than real ICS in practice.

It remains unclear how effective such ML-based anomaly-detection approaches would be
when deployed and used in practice, and a strong consideration of both organizational and end-
user needs is required to build this understanding [18].

In this chapter, I describe an interview-based study of practitioners that monitor and con-
trol ICS. We ask practitioners about the systems that use to detect anomalies and raise alarms,
the tasks they perform with alarm data, and their perspectives on adopting A to support these
tasks. Based on their responses, we determine if current anomaly-detection approaches proposed
in research are suitable for ICS environments and make recommendations to improve the adop-
tion of machine-learning-based tools for protecting ICS. The work described in this chapter is
published in the Proceedings of the Twenty-First Symposium on Usable Privacy and Security
(SOUPS 2025) [61].

7.1 Introduction

In practice, organizations typically use expert-defined rules to detect ICS anomalies [18), 20,
26, [123]. Researchers commonly propose approaches based on machine learning or artificial
intelligence (AI) to improve the state of the art in ICS anomaly detection [43] 146,159, 102, [111,
120]], but these approaches are rarely used in practice. A recent survey of ICS practitioners found
that only 10% of ICS use any form of Al on process data [36]], and reports of Al being deployed
in ICS in practice have only recently emerged [38, [154].

To directly investigate why Al is not commonly used in ICS and to explore new opportunities
for adopting Al to protect ICS, we conducted 18 semi-structured interviews with practitioners
who work on monitoring, operating, and securing ICS in various industries and roles. Based on

"We use the terms "ML" and "AI" interchangeably in this chapter, as we found that some practitioners pre-
ferred the term "AI" in interviews.

77

these interviews, we identify tasks commonly performed for alarms in ICS as part of an alarm
workflow. Alarm workflows often involve defining rules to detect anomalies, reading real-time
data from the ICS and raising alarms, responding to alarms, and modifying alarm rulesets for
efficiency and safety. In this work, we answer the following research questions:

* RQ7.1: What types of data and systems are used for alarms in ICS, and how suitable are
they for AI?

* RQ7.2: What human tasks are performed with alarms in ICS, and how can Al support
them?

* RQ7.3: In organizations that operate ICS, what logistical and cultural factors hinder Al
adoption?

At the process level, detecting attacks is intertwined with detecting non-malicious anomalies.
Hence, our investigation by necessity examines participants’ perspectives on the detection of all
anomalies, and not just those caused by attacks. One particular challenge in answering these
research questions is that practitioners working with ICS typically do not have experience with
Al, which limits their ability to provide details on how Al could be used to protect ICS. Thus,
in our interviews, we first performed a needs assessment of current practices for alarms in ICS.
We asked practitioners how they design, use, and maintain systems to raise alarms; how they
coordinate alarm response; and what challenges they experience with alarms. Since practitioners
in ICS typically do not use Al, we next asked participants about their perceived benefits and
barriers to adopting Al in ICS.

Although most prior work that proposes Al for ICS security focuses on centralized AI models
for detecting anomalies [59, 98], our findings suggest that other use cases for Al are likely to be
more promising in practice. We found (RQ?7.1) that data and systems for raising alarms are often
not centralized, but historical data from alarms is. We also found (RQ7.2) that practitioners often
struggle with tasks beyond detecting anomalies, such as diagnosing alarms and managing alarm
rulesets. We therefore propose creating tools for diagnosing and managing alarms on centralized,
historical data. Furthermore, we found (RQ?7.3) important cultural barriers to deploying and
using tools in ICS, such as general skepticism towards adopting new technology. We therefore
recommend ways to navigate these barriers; for example, given the importance of trust in ICS,
we recommend that tool designers build trust with practitioners by interactively demonstrating
how Al-based tools make predictions.

7.2 Participants and methodology

We interviewed 18 practitioners who work with ICS in multiple industries and roles. In this
section, we describe: how we recruited participants (Section[Z.2.1)), how we conducted semi-
structured interviews (Section [7.2.2)), how we analyzed interview responses (Section [7.2.3)), our
consideration of research ethics (Section [7.2.4)), and limitations of our methodology (Section [7.2.5)).

78

7.2.1 Participant recruitment and demographics

Our target population is practitioners who work on safeguarding and securing ICS by performing
alarm workflow tasks or by managing or supporting alarm workflows. To recruit participants
from this population, we used purposive sampling. We directly contacted individuals in our
professional networks; we advertised on ICS security mailing lists; we emailed utility providers
with public contact information; we posted flyers on LinkedIn and X (formerly Twitter); and we
sent direct messages on LinkedIn to people whose roles matched ICS-related keywords such as
“SCADA” or “Control System.”

In our initial recruitment text, we used the terms “anomaly detection” and “‘security,” and we
failed to recruit participants; multiple organizations responded that they did not perform anomaly
detection or did not have any security-relevant topics to discuss. Given the sensitive nature of
cyber-attacks on critical infrastructure, we believe that participants were unwilling to discuss
these topics or believed that they were not relevant to them. We then updated our recruitment
text to state that we were interested in “monitoring tools” and “alarm response.” We were then
able to successfully recruit study participants and discovered that, in fact, they do use systems to
detect anomalies and acknowledge that cybersecurity concerns can impact alarm response. This
experience serves as a useful lesson that, when interacting with practitioners who work with ICS,
using appropriate terminology is important.

Potential study participants then filled out a screening survey, which asked about their indus-
try, day-to-day tasks, and experience with ICS, cybersecurity, and Al. We screened participants
for those who demonstrated experience with operating, managing, or developing tools for alarm
workflows. We also limited study participants to those located in the USA, although some par-
ticipants reported on prior experiences from working in other countries.

Table [Z.1] provides an overview of study participants’ demographic information. Participants
worked for two different types of organizations: plant owners, organizations that operate an ICS,
and vendors, organizations that support alarm workflows for multiple ICS. Of the participants
who worked for plant owners, six participants worked for local municipalities across five differ-
ent US states.

Similar to challenges reported in related work [[12} [180]], we found it difficult to recruit op-
erators who worked as the first point of contact in alarm response for an ICS. Our interviews
revealed that ICS are often monitored 24/7 by operators who are often overworked. Thus, these
operators likely could not provide the time to participate in an interview for research purposes.
Although we could not recruit operators who worked as the first point of contact in alarm re-
sponse at the time of recruitment, the participants in our study manage these operators, perform
secondary alarm response tasks, or worked as operators in the past. Thus, participants were able
to discuss operator perspectives through second-hand experience and prior first-hand experience.

As described in Section [7.2.3] we iteratively performed qualitative analysis after establishing
an initial list of codes. We determined that recruitment was complete once we observed that no
new qualitative codes directly pertaining to our research questions emerged (inductive thematic
saturation [[1435]]).

79

ID Industry Role " Years Exp.

OT Sec. AI

P1 Electric (solar) Manager 10 0 10
P2 Oil & Gas Engineer 1 0 0
P3 Electric (grid) Engineer 12 4 6
P4 Water Manager 10 0 0
P5 Water Engineer 2 0 0
P6 Water Manager 15 10 0
P7 Oil & Gas Manager 18 0 0
V8 Electric (gen.) Consultant 50 24 0
P9 Manufacturing Engineer 13 0 0
V10 Electric (gen.) Engineer 20 15 4
P11 Electric (grid) Manager 10 10 O
V12 HVAC Engineer 5 2 0
P13 Oil & Gas Engineer 4 0 0
P14 Manufacturing Engineer 7 0 0
V15 Electric (grid) Engineer 25 10 0
V16 Oil & Gas Consultant 8 13 0
P17 Oil & Gas Engineer 16 14 4
P18 Water Manager 35 10 0

Table 7.1: Demographic information for the 18 participants in our study: their industry; their role; and their years
of experience with operational technology (OT), cybersecurity (Sec.), and Al 13 participants primarily worked
for a plant owner that operates one ICS (marked “P”’), while five participants primarily worked for a vendor or as a
consultant that supports multiple ICS (marked “V”).

7.2.2 Interview methodology

We conducted 60-minute, semi-structured interviews over Zoom. Participants filled out a consent
form before starting the interviews. We recorded interviews with participants’ consent or took
notes if participants did not consent to recording.

We divided our interview into four sections. In part I, we asked the participant about their pro-
fessional background and day-to-day responsibilities. In part II, we asked about current practices
for alarms in ICS: how data is collected and alarms are raised, how alarm response is performed,
and how these processes are managed. In part III, we asked about vendor tools and how they are
adopted in ICS. Finally, in part IV, we asked participants about their perceptions of using Al in
ICS. When interviewing participants who worked for vendors, instead of asking about the prac-
tices of a single ICS, we asked about common practices and trends observed from working with
clients. To ensure question clarity, we performed a pilot test of our interview script with two
researchers (who are not directly involved with this work) with experience in human-subjects
research in ICS contexts. Our interview script can be found in Appendix

7.2.3 Analysis methodology

To prepare our data for analysis, we transcribed interview recordings using an automatic tran-
scription service. We edited all transcripts and notes for correctness and anonymity by removing
specifically identifying information related to people, places, and companies before deleting the

80

None “Afew” | “Some” | “About half” | “Most” | “Almost all” Al

| 1 1 1 1 1
0% 20% 40% 60% 80% 100%

Figure 7.1: When reporting the proportion of participants in results, we use qualitative terms instead of raw counts
or percentages. We convert percentages to terms based on the scale shown, using a mapping similar to that of prior
works [51, [72].

original recordings.

To analyze our interview data, we used inductive thematic analysis [29]. After completing
the first 16 interviews, two researchers iteratively and independently reviewed each transcript,
creating a list of initial codes that captured concepts relevant to our research questions. Once
all interviews were complete, the two researchers met to merge codes and group related codes
into themes, producing our initial codebook. We then refined the codebook using an iterative,
consensus-based approach to ensure that the two researchers shared a conceptual understanding
of the codes and could apply the codes consistently. The two researchers independently coded
two transcripts using the initial codebook, met to identify disagreements and update code defini-
tions, and resolved all discrepancies in the codes. Using the refined codebook, both researchers
independently coded four more transcripts, met to discuss codes, and found no substantial dis-
agreements on the definitions or usage of the refined codes. After reaching consensus on the
codebook and its application, one researcher subsequently coded the remaining interviews. To
ensure consistent application of codes, another researcher reviewed these codes for correctness.
Our final codebook and code counts are in Appendix [C|

Following suggested practices in qualitative HCI research [122, [132], we do not compute
inter-rater reliability metrics since the goal of our study is to identify emergent themes rather
than to quantify the frequency of topics. We ensured consistency by refining the codebook when
disagreements were found in double-coded interviews and reviewing each single-coded inter-
view. Furthermore, we do not report the exact counts of participants when discussing results
since our primary findings are qualitative and we gathered perspectives from a diverse but not
necessarily representative sample of practitioners. We instead follow a common methodology
from prior work and use qualitative terms to illustrate the prevalence of themes [S1, [72], by
mapping percentages to terms as shown in Figure

7.2.4 Ethics

Our study was approved by our institution’s Internal Review Board (IRB). Participants were
compensated $60 USD for completing interviews, a similar rate to prior work that interviews
domain experts [96, [118, [125]. Following best practices, we minimize participant harm by ob-
taining informed consent, anonymizing transcripts, and asking participants not to share confi-
dential information about their organization or role [21]. We follow these principles to protect
participants’ individual privacy, to protect participants from potential repercussions from their
employer, and to protect their employers from increased risk by disclosing sensitive information
about cybersecurity practices.

81

Setup alarm systems Alarm response Post-hoc analysis

Establish hAlarms_ ster:; fo Diagnose Aladm;s bs ent to Determine
data collection uman interiace potential harm atabase root causes
for response for analysis
Establish \ : Perform : Add, remove, or

alarm logic corrective action update alarms

[t

Figure 7.2: We found that alarms are managed through a set of processes in an alarm workflow. We show the dif-
ferent tasks in alarm workflows, categorized into three stages: (i) setting up systems for alarms, (ii) responding to
alarms, and (iii) analyzing alarms post-hoc to determine root-causes and update alarm conditions.

We also weighed the benefits of publishing our results, which reveals security practices in
ICS, against the risks of releasing more information to adversaries. We concluded that the risks
were minimal since ICS are already commonly attacked [162], and industry surveys already
disclose that Al-based tools are not commonly used in ICS [36]].

7.2.5 Limitations

The responses of participants we interviewed may not fully represent the perspectives of current,
first-response ICS operators, since they do not currently serve as the first response to ICS alarms.
Some participants in senior roles had not worked as operators for several years, and their re-
sponses may not fully represent all operators due to organizational communication barriers and
changes in the industry. Furthermore, all study participants were based in the USA, which may
limit the applicability of our findings to other countries.

We describe participants’ suggestions for Al adoption in Section[Z.4l Most participants
lacked experience with Al, and so potential misconceptions about the requirements and capa-
bilities of Al may affect the feasibility of their suggestions.

7.3 Results: Current practices for alarms in ICS

In this section, we report our findings for how ICS operators use systems for alarms and per-
form alarm workflow tasks. Since Al is not commonly used in ICS and most practitioners who
work with ICS lack experience with Al [36] (including the participants of our study, shown in
Table [Z.1), we use an indirect approach to investigate our research questions by first asking about
current practices for alarms in ICS. As a pre-requisite for answering RQ7.1, we ask participants
about systems that read data from an ICS and raise alarms (Section [7.3.1]). To support our inves-
tigation of RQ7.2, we ask participants about human tasks performed for alarms (Section [7.3.2))
and challenges with performing these tasks (Section[7.3.3). Finally, for our analysis of RQ7.3,
we ask participants about ICS-specific factors that affect alarm workflows (Section[7.3.4) and
adopting vendor tools in alarm workflows (Section[Z.3.3). Although the individual processes
used for each ICS vary, we identify common processes for alarms across ICS, and we show a
categorization of these processes in Figure

82

7.3.1 Systems for raising alarms

Anomaly-detection systems, whether Al-based or rule-based, rely on real-time data from the
ICS, so understanding how this data is collected is critical to understanding how Al can be used
for alarms in ICS.

What devices and systems are used? Referring to the devices described in Section 2.1} almost
all participants who worked for plant owners use PLCs. Almost all participants also use a level 2
system to coordinate multiple PLCs—some participants use a DCS and some participants use
SCADA. About half of participants report using one or more control rooms, which are centralized
locations for operators to monitor ICS and delegate alarm response. In contrast, some participants
reported that their organization does not use control rooms; operators instead interact with PLCs
through co-located HMlIs, which are distributed across the industrial process. Finally, some
participants report that their organization uses a data historian, which stores process and alarm
data in a central database for post-hoc analysis. We describe these post-hoc analysis tasks in

Section

Which organization manages these devices? Although plant owners use various devices for
monitoring and controlling industrial processes, they do not necessarily program or manage these
devices. Some participants work for plant owners who rely on vendors to manage their devices;
a few participants reported that this was common in their industry. In contrast, some participants
work for plant owners that employ their own staff to program and manage their devices. We
describe how vendors affect alarm workflows in Section

A lot of them actually contract out their PLC, SCADA, networking, some of the more high level stuff.

Actually, almost every city that I know does that. —P6

What behaviors are alarms used for? All participants reported using alarms to detect anoma-
lies in process values, although the reasons for detection varied. Most participants mentioned
safety: process alarms ensure the safety of the physical process or the process equipment. Some
participants mentioned non-critical reasons, such as to ensure adequate production or to ensure
that regulations are being met. Some participants also reported using alarms that were not re-
lated to process values; these include alarms to detect component failures (e.g., an unresponsive
PLC), cybersecurity events, or physical security events. Finally, some participants reported spe-
cial types of alarms, such as informational alarms, maintenance alarms, and alarms written for
specific, prior incidents.

How are alarms defined? Most participants reported that alarms were defined by rules; alarms
were raised if a process value exceeded an upper or lower limit. About half of participants addi-
tionally reported that more complex logic was used, such as using rates of change or combina-
tions of rules.
We have combined conditions to generate a new alarm or suppress some alarms. For example, if we
trip something, we don’t need to see alarms from every downstream device. —P17

83

Where is alarm logic implemented? Since various types of devices are used in alarm sys-
tems, the placement of alarm logic also varies. Most participants reported that alarm logic was
written in PLCs; these alarms only evaluated conditions based on data available to the PLC.
Some participants reported that alarm logic was instead written in DCS or SCADA; these alarms
were often more complicated and required data from multiple PLCs. Finally, most participants
also reported that alarms were written directly into level O devices (e.g., sensors), referred to as
“safety systems.” Safety systems can perform commands (e.g., shutting off a valve) without hu-
man involvement or inter-device communication and often send alarms to higher-level systems
for diagnosis.

Where are alarms displayed? Although alarm logic is written into devices at levels 0-2,
alarms are not necessarily displayed in these devices. Some participants reported that alarms
from PLCs were forwarded to DCS, SCADA, or HMI. Devices in levels 0—1, such as safety sys-
tems and PLCs, often lack an operator interface, so alarms from these devices are forwarded to
human operators in a level 2 system.

The SCADA is pulling from the PLC and if there’s an alarm, it’s going to display that on the SCADA

itself. -P14

However, a few participants reported that alarms were not always forwarded. In some cases,

alarms could be raised without visibility to a level 2 system.

Some of those alarms will not go to SCADA, at least not directly. [...] If a relay causes a breaker to

open, the relay knows why it opened, SCADA would see the breaker open, but if you were looking at

your SCADA logs, you would never get any indication as to why that breaker opened. —V15

Takeaways for AI. Participants reported using a variety of devices for raising alarms, which
can range in data availability and computational power. Additionally, some plant owners rely
on vendors to manage these devices. These differences make it unclear who would manage an
Al-based tool for alarms, and where it should be deployed in an ICS. We also found that alarm
conditions use logic and implementations that may differ from Al-based anomaly detection. For
example, alarms use various data modalities (e.g., network and process data) and custom logic
that may not correspond to learnable patterns in a dataset.

Finding 16: Across ICS, devices used in for alarms vary in data availability, com-
putational power, and ownership. These differences affect who manages an Al-based
anomaly detection tool and where it would be deployed, limiting the feasibility of
general-purpose solutions.

7.3.2 Human tasks in alarm workflows

We asked participants about human tasks performed in alarm workflows, such as responding to
alarms and managing alarm rulesets. We investigated if and how humans performing these tasks
could be supported by Al

84

Who responds to an alarm? Most participants reported that an on-site operator is the first to
respond to an alarm. For a majority of alarms, operators are able to respond appropriately, either
by performing the required remediation action or by acknowledging the alarm as a non-issue.
If the proper response could not be determined or performed, operators would then escalate to
higher levels of authority for help. A few participants who worked for plant owners also reported
contractual agreements with vendors for alarm response. A few participants reported that they
served as the second or third point of alarm response for an ICS.

The alarm does not go away or it gets worse, then you escalate up to the next line. I'll definitely get

involved in troubleshooting and trying to figure out stuff like that. —P13

How is the response to an alarm determined? Most participants reported using structured
protocols to remove ambiguity in alarm response. About half of participants reported that alarm
response was dictated by pre-defined categories for alarms.

The operator knows if an alarm comes in color red, you have to address that right away. If it comes
in this color, you just call this person. If it comes in this color, you don’t even have to do anything.
=Vi5

However, structured protocols do not cover all cases of alarm response. Most participants re-
ported that alarm diagnosis sometimes relies on operator expertise—operators diagnose alarms
by correlating them with auxiliary data in an intuitive, unstructured process. Despite using struc-
tured alarm response protocols and auxiliary data sources, less-experienced operators can strug-
gle with alarm diagnosis.

[think that’s probably our greatest challenge: training the staff that’s still fairly new and still
learning the processes what the appropriate level of response is. —P18

How are alarms analyzed post-hoc? In cases where the real-time alarm diagnosis and re-
sponse was incorrect, organizations analyze historian data for root-cause analysis. About half
of participants reported that their organizations have specific teams or roles for asynchronous,
post-hoc alarm analysis.

Another team is looking through our alarm history and identifying where we have ongoing issues or
where we didn’t respond to something the way we should have. —P7

A few participants reported analyzing alarms post-hoc for alarm management. Participants
mentioned the ANSI-ISA 18-2 standard on alarm management [81] and discussed alarm man-
agement tasks such as reviewing and updating alarm conditions to reduce operator fatigue. Orga-
nizations perform alarm management by reviewing historical alarm data through regular, cross-
functional meetings to ensure that existing alarms are effective. If needed, alarms are added,
removed, updated, or re-categorized.

We have alarm management expectations. Once a week, as an engineering team, we meet and review
all of the alarms that came in over the last week, and try and figure out, was this a good, useful, real
alarm? [...] And you can make changes to the alarm set points or things like that. —P13

Some participants did not explicitly mention “alarm management” but reported other pro-
cesses for managing alarm rulesets. Some organizations regularly test alarms, some organiza-
tions use tools to analyze alarm data, and some organizations allow operators to update alarms
themselves.

85

We use an alarm analysis tool. [...] It’s doing SQL queries to find repeat offenders or numbers per
hour. —P7
Finally, a few participants explicitly suggested that, since their historian data was centralized
and labeled, an Al-based tool could be trained to help with alarm analysis.
So we now have 1000s upon 1000s of examples of: the data was doing this at the time, it led to this
root cause analysis, and it led to this action. And I think that’s something that we can begin to look

at applying deep learning algorithms to, because we have the necessary data to start training that.
—-P1

Takeaways for AI. Although most alarm response is performed through structured protocols,
we found that some tasks for alarms rely on intuition and expertise, such as alarm diagnosis
and alarm management. These tasks involve post-hoc analysis of alarm data and already include
automated processes and tools, which suggests openness towards using Al for these tasks.

7.3.3 Challenges with alarms

In this section, we describe common challenges reported by participants when working with
alarms. Participants reported challenges across alarm workflows, from correctly diagnosing
alarms to deciding if alarm rulesets were effective.

Nuisance alarms. Most participants discussed “nuisance” alarms, which do not correspond to
genuine harm, do not convey useful information, and are not actionable. Operators are burdened
with recognizing and acknowledging nuisance alarms to remove them from user interfaces, and
some participants reported that it can be difficult to distinguish nuisance alarms from genuine
alarms. When asked about the frequency of alarms at the ICS they worked with, participant
responses ranged from two to 250 alarms per hour. A few participants mentioned a growing
awareness about alarm fatigue and its potential to increase the likelihood of operator errors.
Processes may have some variances that are going to cause nuisance alarms. Eventually, they run
into, "Oh, I've ignored too much. Now I've got myself into a hole.” So we try to be very judicious
about what we what we alarm about. —V10
Some participants reported using strategies to mitigate nuisance alarms. These include alarm
management (described in Section[7.3.2)), defining guidance for alarms (e.g., “alarm philoso-
phy”), using tools to suppress nuisance alarms, and using tools to identify nuisance alarms. One
participant described their experience reviewing and updating alarm rulesets at their organiza-
tion, reporting that it required significant amounts of time and labor.
We looked at every single alarm that we have, and then went through and wrote troubleshooting
guidance, and then challenged if you need the alarm, and then what the alarm point should be. And
that was a significant year and a half of, at least 10 hours a week. —P13

Challenges in alarm diagnosis. Even if an alarm is determined to be genuine, alarm diagnosis
can still be challenging. Some participants reported limited access to data as a challenge for
alarm diagnosis. In some cases, due to missing coverage in monitoring or logging, operators
would need to physically travel to properly diagnose an alarm, limiting their ability to respond
quickly.

86

It could be 10 minutes to an hour or two, in some parts of the country, of drive time before you even
get eyes to see what’s going on. —P11
A few participants reported that too much information could overwhelm operators and hinder
diagnosis. Providing data to operators requires a balance between sending sufficient diagnostic
information and avoiding information overload.
We weren’t rationalizing what we were bringing in, trying to bring everything back that we could.
And so getting any value, really, out of those alarms was difficult. —P7

Takeaways for AI. Participants reported challenges with alarm workflow tasks, particularly for
alarm management and alarm diagnosis. We suggest that Al could help mitigate these challenges
and improve these tasks, and we describe participant perspectives on using Al for alarm workflow
tasks in Section

Finding 17: Practitioners find alarm diagnosis and management difficult, suggesting an
opportunity for an Al-based tool to help with these tasks.

7.3.4 Factors that affect alarm workflows

In this section, we describe factors specific to ICS that affect how alarm workflows are designed
and executed. We identify opportunities for improvement and pitfalls that should be avoided
when using Al for alarm workflows in ICS.

Limited resources in ICS. Plant owners often have small OT and cybersecurity budgets [134],
introducing constraints on technology and personnel. Most participants discussed how these
constraints made alarm workflow tasks more difficult.

About half of participants who worked for a plant owner reported personnel constraints,
including understaffed teams and limited technical skills. These constraints limited plant owners’
abilities to improve their processes for alarms, as they were occupied with critical operations and
alarm response.

I've got one assistant now and I feel like I could keep three assistants busy. There’s this triage of
things that would be valuable to do versus things that are urgent. —P4

Participants also reported challenges with managing or using technology in ICS. Some par-
ticipants reported challenges with managing OT networks, which caused problems with data
visibility and trust. A few participants reported concerns with device capabilities, in terms of
both computation and networking. A few participants also reported challenges with updating
and replacing ICS devices. Given these technical constraints, some participants expressed doubt
that adopting advanced tools for alarms would help.

They wrote a little report on it. Here’s some potential alternatives. [...] But the alternatives may not
work any better because the problem may really be that our network is unstable. —P4

Perceptions of safety in IT vs OT. About half of participants reported tensions between in-
formational technology (IT) and operational technology (OT) professionals; such tensions have

87

been studied in prior work [62} 187, (198]]. We found that these tensions can add friction to alarm
workflow tasks when IT professionals interact with OT systems.
People that came up from the IT side, their mental model of digital systems, it’s not working, I'll just
reset it. I can’t do that if I'm running a power grid. [...] Because IT capabilities are continuing to
get pushed closer to physical systems, people are coming from the IT side. That’s where I think a
majority of the mental model change needs to happen. —P11
We found that safety, rather than security, was the focus for most participants. About half
of participants acknowledged that ICS security was relevant to their work, since attacks on ICS
could affect systems used for alarms. However, some participants reported that their organization
does not use OT security tools, instead reporting that they believed security was the responsibility
of IT.
A lot of the industrial control equipment, your PLCs and stuff, are pretty vulnerable. If somebody
can get to them over a network, we feel like we’re already essentially screwed. So the emphasis is
more on the IT side and keeping those things off the network. —P4
Of the participants who work for vendors, almost all reported that concerns about security
emerged in their discussions with plant owners, which affected their practices for monitoring and
connectivity.

Some people will not connect [relays] to SCADA because there’s a worry if your SCADA system
had a problem, mainly a cyber problem. [...] By isolating it completely, you’ve got another level of
confidence. V15

Government regulations. In some industries, government regulations mandate which moni-
toring, alarms, and security practices must exist. Of the four participants who worked for plant
owners in the water industry, half reported that they wrote alarms for certain process values be-
cause they were required by regulation. Most participants who worked in the electric industry
reported on how NERC CIP (North American Electric Reliability Critical Infrastructure Protec-
tion) standards [[169] impact their systems for alarms. In some cases, regulations would cause
plant owners to consider the tradeoff between increased monitoring and the additional cost of
required compliance.

Does the device have connectivity? If it does have connectivity then you’ve got to follow these extra

rules. But if you can say the device has no connectivity, then you don’t have to answer those next

questions. =VI15

A few participants also reported on differences in regulation across industries. One partici-

pant commented specifically on how regulation could affect Al adoption, stating that NERC CIP
would serve as a barrier for adopting Al in the electric industry. Developers of Al-based tools
will therefore need to meet NERC CIP regulations for adoption in the electric industry.

If it’s like oil and gas, where it’s a well-known, well-documented process, they’re more likely to

embrace Al type stuff. If it is a power-gen aeroderivative turbine, a lot of times it’s going to be very

human centric, because they cannot document the Al-ness for NERC CIP. -V10

Takeaways for AI. Several factors can limit how alarm systems are used and how alarm work-
flow tasks are performed: difficulty updating devices, mismanaged OT networks, understaffed
and undertrained teams, cultural friction between IT and OT professionals, and restrictive gov-

88

ernment regulations. Tool designers must successfully navigate these barriers for effective adop-
tion in ICS alarm workflows.

7.3.5 Adopting vendor tools in ICS

In Section [Z.3.1] we reported that some plant owners have contracts with vendors for monitoring
and alarm response. This suggests that vendors could potentially be the driving factor towards
adopting Al for alarm workflows in ICS. Since most existing tools are not based on Al, we asked
participants about how vendor tools in general are evaluated and adopted into ICS. We discuss
participant responses when asked specifically about adopting Al in Section [7.4l

What barriers hinder adoption? Almost all participants reported that adopting vendor tools
in ICS is difficult. Participants reported concerns with vendor tools such as high cost, require-
ments for skilled personnel, lack of customization, and a lack of trust.

You need personnel, you need people trained on new technology, if you want to put in new technology.

And that was a problem with certain brands. —P5
Some participants reported that plant owners prefer to keep their systems homogeneous under

a single vendor; many vendors provide solutions across the ICS stack for control logic, alarms,
and OT networks.

There’s better stuff out there that we could be using, but our investment in <Brand A> versus what it

would cost and the amount of work it would take me to switch over to <Brand B> is pretty unfeasible.
-P6

What values are important for adoption? Participants reported that quantitative criteria were
not frequently used to evaluate vendor tools. Some participants reported that metrics like accu-
racy or Fl-scores, commonly used in ICS anomaly detection research, were not meaningful to
them. Instead, almost all participants reported that tools were evaluated qualitatively. Values
such as brand reputation, positive discussions with vendors, and positive recommendations were
reported as most important. A few participants mentioned vendors that provide Al-based tools
for ICS, but reported that they were mostly not yet trusted by the industry.

You could do all of this testing to say, what’s the percentage of identified anomalies versus unidenti-
fied anomalies? There’s things like that. Yeah, not at my level. —P8

Who decides to adopt new technology? Finally, we found that who made tool acquisition
decisions varied. Some participants reported that a cross-functional team decided if a vendor
tool was adopted, whereas some participants reported that practitioners who work with ICS,
including the potential end-users, were often excluded from these decisions.
Some of that decision making, sadly it’s going to be some really slick talking salesman talking to an
engineer that will never work with that SCADA system. And then the people that use that SCADA
system aren’t going to have a say in what they’re using. That’s just the way it is. —P6

89

Takeaways for AI. Tool adoption in ICS is heavily based on trust and reputation. Detection-
based metrics, which are used to compare Al models in research, are not used to motivate adop-
tion. Tool designers and vendors should therefore develop new metrics that better convey trust
and build their reputation with ICS insiders.

Finding 18: Practitioners heavily rely on trust and reputation when deciding to adopt
new tools, rather than quantitative metrics commonly used in research evaluations.

7.4 Results: Perceptions of Al

In the final part of our interview, we asked participants directly about their perceptions of using
Al in ICS. We allowed participants to respond based on their own conceptual model of Al, but
since most study participants had no experience with Al (shown in Table[7.1]), we acknowledge
that these suggestions may not necessarily be practical.

We describe participants’ conceptual models of Al (Section[Z4.1)), perceived benefits of
adopting Al (Section[7.4.2), and perceived barriers to adopting AI (Section[7.4.3). Combined
with our findings of current practices and challenges (Section [7.3)), these responses reveal oppor-
tunities and challenges for using Al to support alarm workflows in ICS and guide our recommen-
dations in Section

7.4.1 Conceptual models of AI

Given the lack of participant expertise in Al, we first establish and describe participants’ men-
tal models of Al In this study, we define Al to be any technology that uses historical data to
learn patterns and makes predictions on new data, such as neural networks [4} 101} [171], large
language models (LLMs) [[165], SVMs [13,[150], and confidence intervals [44]]. We found that
all participants demonstrated some understanding of what Al was and its capabilities. Most
participants mentioned a specific model, such as LLMs, neural networks, or linear regression
models. The remaining participants did not mention a specific model, but correctly referred to
Al as technology that learns and makes predictions from data.

7.4.2 Perceived benefits of adopting Al in ICS

Some alarm workflow tasks involve processing large amounts of data and seeing complex pat-
terns. Based on their understanding of Al and its capabilities, most participants thought Al was
well suited for such tasks.

Making alarm workflow tasks more efficient. About half of participants believed that using
Al would save operators’ time. In Section[7.3.4] we reported that ICS operations teams are often
understaffed and fatigued, and AI could help reduce this burden. About half of participants
believed that Al could outperform humans at some tasks, such as seeing complex relationships
in data or avoiding distractions.

90

If there was some kind of machine learning, it might notice things like, these alarms happen when
you're running that motor over there which you wouldn’t think is related. —P4
A few participants who worked for plant owners reported trying LLMs for alarm diagnosis,

outside of their organization’s established alarm workflows. These participants tried using LLMs
to diagnose previously resolved incidents. Participants reported positive experiences with LLMs,
which were able to correctly diagnose the incidents and strengthened their belief that Al could
provide value in similar circumstances.

In the prompt, I put the question: we know that a certain equipment was tripped, so we asked to find

why it’s tripped. ... We spent like a whole bunch of hours, but this model for 10 seconds, and having

30% of information we had, gave us the cause of the trip. —P17

7.4.3 Perceived barriers to adopting Al in ICS

In Section [7.3.4] we described barriers to adopting vendor technology in ICS. Echoing these find-
ings and based on their understanding of what Al is and its requirements, participants reported
their perceived barriers to adopting Al in ICS.

Limited compute and data availability. Participants reported concern that using an Al-based
tool would require data and computational infrastructure beyond their organization’s capabilities.
About half of participants reported that data availability was a barrier to adopting Al because their
data quality is too poor, their data is not sufficiently labeled, or that there would be IP issues with
Al-based tools accessing their data.

The mistake would be: Hey, we have this incredible system that can detect all these problems. [...]

But no site manager wants to set them up with the massive data requirements to make that product
run. —P1

Limited people with AI expertise. Some participants reported concerns with finding and hir-
ing the specialized staff required to use Al-based tools. On the other hand, a few participants
suggested that adopting Al could help with staffing issues, suggesting that using Al could attract
a younger, more skilled workforce to ICS.

You need the person who knows how the process is controlled, how alarms are generated, and how
an LLM works, which is not easy to find. —P17

Low trust in AI. Most participants reported that, since ICS are so critical, they needed tools
that were trustworthy. About half of participants reported concerns with AI’s lack of transparency
or tendency to make errors. These concerns made it difficult to convince plant owners to adopt
Al-based tools.
The customer, he doesn’t trust [Al] in control at all. [...] If you give them a method which has some
problem with robustness, it can cost him millions if he got to shut down activity. —V12
When asked about ways to improve Al in general, some participants recommended that Al
reduce overconfidence and some participants recommended that Al be more transparent.
There are many wrong ways and there’s a few good ways to implement [Al], and the good ways all
involve: Here’s how it works, here’s what it’s looking at, breaking it down, and putting a lot more
transparency behind it. —P11

91

Stage of Alarm Workflow Available Input Data Prediction Task(s) Anticipated End-user

Anomaly detection Real-time process data Detect anomalies in real time Operator
. . . Suggest real-time alarm response Operator
Alarm diagnosis Alarm with context ugses’. P P
Predict root cause of alarm Lead operator
. . Fix a misconfigured alarm Engineer
Alarm management Set of prior alarms and actions £ &
Improve alarm ruleset Manager

Table 7.2: We suggest opportunities for Al-based tools to support different alarm workflow tasks. For different
stages of an alarm workflow (shown in Figure[7.2), we list the expected input data available for Al, potential pre-
diction tasks for Al, and anticipated end-users who would use these predictions.

Participants also suggested methods to build trust in Al-based tools before adoption: allowing
practitioners to interactively test with real data, establishing benchmarks for Al-based tools in
ICS, adding explanations to predictions, or ensuring that tools were only used as an assistant to
human operators.

Around alarms, I would say, starting as an assistant, because there’s no way it’s going to have all of
the experience and all of the information necessary to be 100%. But I think it could do a really good
Jjob of helping you. —P7

Finding 19: For effective adoption of Al in ICS, tool developers and researchers must
meet existing requirements for data and personnel and interactively demonstrate tool
transparency to practitioners.

7.5 Analysis and recommendations

In this section, we answer our research questions and provide recommendations for adopting Al
to support alarm workflows in ICS. We discuss how Al could use existing data and systems for
alarms (RQ7.1, Section[7.5.1]), how Al could support humans in alarm workflow tasks (RQ7.2,
Section[7.5.2]), and how to navigate barriers that hinder Al adoption (RQ7.3, Section [7.5.3)).

7.5.1 Deploying Al in systems for alarms

What data and systems are used for alarms in ICS, and are they suitable for AI? (RQ7.1)
We found that the systems and practices for alarms vary across ICS (Section[Z.3.1)). Alarms op-
erate on process data, network data, or data from cybersecurity tools; alarm logic is programmed
into sensors, PLCs, SCADA, or DCS; and alarms can be forwarded to and displayed on various
devices. Systems for alarms also vary in the degree of vendor involvement. These differences
suggest that, although most prior work that proposes Al-based ICS anomaly detection assumes
that all process-level data and compute are available for inference [98, [107], deploying a cen-
tralized Al model with real-time access to all process features is unlikely to be feasible for most
ICS.

We found that organizations that work with ICS often centralize and store historical data,
which may make it suitable for Al. With historical data, participants reported performing data

92

analysis tasks, labeling data, and using automated tools that suggest a readiness for adopting Al

(Section [7.3.2).

Recommendation: Consider the varying availabilities of data and infrastructure in ICS
when deploying AI. Effectively using Al-based tools to support alarm workflows in ICS re-
quires considering how an Al-based tool would be deployed: what data will be used for training
and inference, where inference will be performed, and whether tools will be managed by plant
owners or vendors. Designers of Al-based tools need to consider that it is likely that they would
be training Al models on only a subset of process-level features.

In domains other than ICS, some deployment models of Al may already fit with the existing
systems and practices of some ICS, such as decentralized algorithms for model training and
inference (e.g., federated learning across 10T devices [[130]) or accessing Al-based tools through
a vendor (e.g., Al as a service [140]). Future work should investigate and develop deployment
models for Al that match the varying requirements of ICS environments.

Recommendation: Acknowledge the impact of government regulation on AI adoption.
We found that differences in government regulation impact alarm workflow practices (Section [7.3.4)).
For example, in the electric industry, NERC CIP regulations impose security and documentation
requirements on connected devices and collected data, which causes some plant owners to choose
not to connect certain devices to networks. Developers of Al-based tools for the electric industry
will similarly need to comply with NERC CIP regulations. Thus, adopting Al for ICS in indus-
tries with stricter regulations (e.g., electricity) will be more difficult than in others (e.g., oil and
gas). Researchers and designers of Al-based tools may find new opportunities by focusing on
deployment in industries with more flexibility for Al adoption.

7.5.2 Using Al to support alarm workflow tasks

What human tasks are performed for alarms in ICS, and can AI support them? (RQ7.2)
We found that several tasks are performed for alarms in ICS (Section [7.3.2)), as shown in Table
In particular, beyond real-time anomaly detection, humans analyze alarms post-hoc for alarm di-
agnosis and alarm management. Most prior work in Al for ICS security focuses on Al-based
anomaly detection [[67, 107,120} 178]], but participants reported challenges with alarm diagnosis
and alarm management, which rely heavily on intuition and expertise (Section[7.3.3). Partici-
pants themselves also suggested that Al could support these tasks (Section [7.4.2)). We therefore
propose designing an Al-based tool to support alarm diagnosis or alarm management. Given an
alarm (or set of alarms), an Al-based tool could help humans triage alarms, suggest potential
remediation actions, or predict root causes; or given a larger (e.g., from the past month) dataset
of alarm and response data, an Al-based tool could suggest alarms to be added, removed, or
modified.

Recommendation: Design Al-based tools to assist humans, rather than act autonomously.
As described in Section we found that participants prefer that Al-based tools make sugges-
tions rather than automate decisions. Furthermore, as described in Section alarm diagnosis

93

and alarm management are often performed post-hoc and are used to address rare and complex
situations; a human-facing, Al-based assistant may be appropriate for these tasks where urgent
action is not required. Researchers and designers of Al-based tools should therefore focus on
interactively assisting humans. Prior work has explored methods to provide assistance through
human-AlI interaction [112} 113} 127, 138} [196], and a promising area of future work would be
to apply such methods to ICS alarm workflow tasks.

Recommendation: Design Al-based tools to produce unintrusive, actionable outputs. We
found that nuisance alarms and operator fatigue often hinder alarm response, and diagnosing
unclear and unactionable alarms is a common challenge (Section[7.3.3). We recommend that
Al-based tool designers ensure that Al outputs are actionable (e.g., by using Al-based explana-
tions to suggest actions with each prediction [8, 45, [131]), and we recommend that Al-based
tools balance the desire to inform the user with giving the user the ability to avoid repeated noti-
fications if they are judged to be incorrect (e.g., by allowing humans to make decisions without
Al involvement [22, [30]).

7.5.3 Navigating barriers to AI adoption

What ICS-specific factors hinder AI adoption? (RQ7.3) We found that barriers from tech-
nology (e.g., limited device connectivity), personnel (e.g., insufficient training), and culture (e.g.,
tensions between IT and OT professionals) can limit alarm workflow design and execution in ICS
(Section [7.3.4). Participants also reported reservations about adopting Al in ICS (Section [7.4.3)),
stemming from a general mistrust of new technology in ICS (Section[7.3.5)). Vendors are said
to fail at meeting the requirements of ICS by imposing high costs, not providing adequate cus-
tomization, or not matching the culture of safety in ICS. To avoid making similar mistakes when
deploying Al-based tools to protect ICS, we recommend ways for tool designers to navigate these
barriers.

Recommendation: Design Al-based tools for the skill sets of practitioners who work with
ICS. We found that alarm workflows involve multiple people with different tasks and special-
ties (Section[7.3.2). For example, alarm diagnosis could be performed by an operator who first
sees the alarm, a manager determining the root cause of an alarm that was incorrectly responded
to, or an engineer debugging the logic of a misconfigured alarm. Al-based tools should be de-
signed for specific users performing these tasks, rather than generally for practitioners. Table
lists potential opportunities for Al to support different alarm workflow tasks.

Participants also reported that requirements on personnel would be a barrier to adopting Al-
based tools (Section [7.4.3)), and plant owners are unlikely to hire or train skilled end-users to use
Al-based tools. Instead, Al-based tools should be tailored to the existing skill sets of practitioners
working with ICS. Prior work in other domains has investigated how explanations of Al outputs
can be modified based on levels of user expertise [34, 49], and a promising area of future work
would be to apply such approaches to support practitioners in ICS.

94

Recommendation: To build trust in Al focus on demonstrating transparency to users. We
found that trust and reputation were more important than quantitative metrics when deciding to
adopt new technology in ICS (Section[7.3.3)). Practitioners who work with ICS often do not
currently trust Al (Section[7.4.3)), so Al-based tool designers must first build this trust. Partic-
ipants suggested building trust by transparently demonstrating how Al-based tools make deci-
sions. Furthermore, participants reported that OT professionals face challenges working with
IT professionals, are weary of new technology being pushed into their environments, and can
be excluded from tool-adoption decisions (Section[7.3.4). Thus, Al-based tool demonstrations
should include practitioners who work with ICS and OT.

As a first step to build trust in Al, we recommend pilot projects that allow interactive testing
of Al-based tools and focus on transparency of Al models. Prior work has developed interactive
tools for prototyping Al-based tools by allowing users to modify data and observe changes in
predictions [183) [184], and future work should investigate whether such methods are effective
for practitioners who work with ICS.

7.6 Summary

We investigated current practices for alarms in ICS and identified challenges and opportunities
for Al to support these practices. After conducting semi-structured interviews with 18 practi-
tioners who work on safeguarding and securing ICS in different roles, from performing alarm
response to building tools for alarms, we identified opportunities to adopt Al-based tools to sup-
port alarm diagnosis and alarm management. Finally, we recommend ways for researchers and
designers of Al-based tools to navigate barriers to adoption in ICS, such as considering Al mod-
els with access to only a subset of process-level features and interactively demonstrating model
transparency to practitioners.

95

96

Chapter 8

Conclusion

Finally, in this chapter I provide concluding remarks for the thesis. I describe the findings of this
thesis in the context of findings from related work (Section[8.1)), propose directions for future
work in ML-based ICS anomaly detection (Section[8.2), and provide a final summary of the
thesis (Section [8.3]).

8.1 Connecting to related work

The findings presented in this thesis cover many aspects of ICS anomaly detection, ranging from
improving empirical evaluations performed by researchers to improving the usability and appli-
cability of such approaches in practice. In this section, I briefly comment on how the findings
presented in this thesis complement those of related work.

Evaluation metrics and benchmarks Selecting the proper datasets, metrics, and benchmarks
for evaluation is critical for making well-informed progress in any field of machine learning,
including ICS anomaly detection. In the years since the work presented in Chapter 4 was pub-
lished [S9]], related work has similarly identified issues with datasets and benchmarks used for
time-series anomaly detection tasks, both in related security-relevant domains [27, [192]] and for
ICS anomaly detection [181} [189]. As a result, concurrent works have similarly questioned if
deep learning is needed for ICS anomaly detection and if existing datasets for ICS anomaly
detection should be improved [[189,190]].

In general, the results of this thesis and other related works have contributed to a change
in standards for anomaly-detection evaluations—with increased scrutiny of methods, metrics,
datasets, and their impacts on research findings. As the research community continues to improve
its methodological standards in training and evaluating ML-based detection models, research
findings will become more reproducible, standardized, and practical, leading to more grounded
and meaningful progress in ICS security.

Composability, practicality, and usability Another key theme of this thesis is the importance
of designing ML-based approaches that are usable for humans, practical for organizations, and
composable with existing processes and techniques. Best-performing methods should not be

97

solely motivated by achieving the highest score on a metric of interest but additionally evaluated
based on how effective they are in the context of a greater system and workflow.

This thesis reinforces the findings of related work that demonstrate the importance of ML-
based approaches that are interpretable and composable, even at the cost of detection perfor-
mance [12, 39, 125, [190]. The key is not to design ML-based approaches that perform best
across all possible systems, datasets, and behaviors, but to design ML-based approaches that
complement existing strengths, particularly given that resource constraints and varied operations
is common in ICS industries [24} [161]]. In the spirit of designing methods that are compos-
able with existing workflows, new approaches can and should leverage techniques from related
works in root-cause attribution [[78, |89, [90] and alarm summarization [3} (11,92} |148]], rather than
attempting to invent new techniques from scratch for the ICS setting.

8.2 Future work

In this section, I propose directions for future work in ML-based ICS anomaly detection, both in
the short-term and long-term future.

Supporting other workflow tasks with ML-based approaches In Chapter[7] I described that
practitioners often found anomaly diagnosis and alarm management more difficult than anomaly
detection, yet most research focuses on advancing the state-of-the-art for anomaly detection.
Given the centralized, non-time-critical nature of alarm response data, I propose that, in the
short-term future, researchers focus on designing ML-based approaches for anomaly diagnosis
and for alarm management for ICS. Such approaches could complement existing approaches for
anomaly detection that are not based on machine learning and complement existing workflows
and results for alarm diagnosis and management (e.g., alarm diagnosis and ruleset management
for SOCs [12,[180]). Furthermore, guided by our recommendations in Section[Z.3] these newly
designed approaches should focus on providing assistance, providing actionable suggestions, and
maintaining transparency to practitioners.

Hybrid systems for ICS anomaly detection Rule-based approaches (i.e., expert systems)
and machine-learning-based approaches have complementary tradeoffs in their detection per-
formance, attribution performance, practicality, and current levels of trust. In the short-term.
I propose developing approaches for detecting and diagnosing anomalies in ICS that focus on
combining machine-learning-based approaches with existing rule-based approaches, rather than
trying to replace them. Such approaches would building on prior works that develop general-
purpose approaches to combine machine learning and expert systems [3,167] and identify needs
for such systems [[125]]. ICS are particularly diverse; I found that many organizations that design
or operate ICS choose very different systems based on their level of technical expertise, type of
physical process, government regulations, and many other reasons. These design choices will
affect the degree to which machine-learning may be used; for instance, some ICS may not be
suited for any use of machine learning, whereas other ICS may lean far more heavily on such
automated approaches. Exploring such design tradeoffs is a promising area of future work that
will help broaden the application of ML-based approaches for a wider variety of ICS.

98

Exploring data requirements for detecting anomalies One key technical result of the prac-
titioner interviews described in Chapter[7] is that many systems for monitoring ICS are often
de-centralized and must rely on incomplete or missing data in real-time. This result directly con-
tradicts the common assumption of centralized ML models that require full access to all features.
Prior works have explored ML methods that work with incomplete data [[19} [115, 193], which
may be more practical for edge deployments in ICS [130]]. For instance, ML models that can per-
form inference on incomplete data could be deployed on edge devices such as PLCs and serve
as a complement to centralized models the perform inference in a SCADA or analytics server.
Furthermore, edge devices such as PLCs are often more resource constrained than centralized
servers, so requiring the amount of data that must be collected and processed for ML by these
edge devices is likely to further help with adoption. In the short-term, a promising area of future
work would be to explore existing methods for training ML models that can perform inference
with incomplete data and applying them to ICS anomaly detection. More generally, building a
stronger understanding of the data requirements for model training and inference will help ease
the path to adoption for data-constrained or resource-constrained ICS.

Foundation models for ICS anomaly detection and attribution Because access to training
data and ML expertise is difficult for many ICS (as described in Chapter[7)), using pre-trained
anomaly detection models could be a valuable alternative to training models for ICS anomaly
detection. Recent work has proposed time-series foundation models with can perform forecast-
ing and anomaly detection tasks without requiring any model training [41), 42, 66], yet these
foundation models have yet to be applied to ICS anomaly detection tasks. As short-term future
work, researchers should evaluate if foundation models are effective for ICS, both for detecting
anomalies and for diagnosing and attributing them. If such approaches prove to be insufficient,
as longer term future work, researchers should design foundation models to be more effective
for ICS; this may involve training new foundation models on time-series datasets that are more
relevant to ICS (e.g., data from various physical processes) or designing adaptations to existing
time-series foundation models that embed the required ICS-relevant information. In Chapter|[6] I
demonstrated that general-purpose, fully connected ML models were less effective for ICS than
CyPRESS, which used structurally sparse representations of ICS. Thus, I recommend that a sim-
ilar approach which constrains the types of relationships expressed by foundation models, either
by adjusting predictions post-hoc, fine-tuning, or pre-training again from scratch, is likely to be
effective.

Autonomous attack exploration and data generation Using a large and diverse set of ICS
anomalies for testing is crucial to designing and selecting effective anomaly-detection approaches.
The works described in Chapter[d] and Chapter [5| have demonstrated that a higher diversity of
anomalies is needed to effectively evaluate anomaly detection and attribution, yet obtaining this
data remains prohibitively difficult for most ICS in practice. In lieu of data from real attacks
on their ICS, organizations that operate ICS not only require high-fidelity simulations of their
physical process and control logic but also the effort and expertise needed to simulate attack
behaviors that are sufficiently stealthy yet harmful. As an area of longer term future work, I
believe that autonomous agents could be used to explore such attack behaviors at a much faster

99

rate than a human expert. Recent prior work has applied autonomous agents to test various at-
tacks on networked systems [[158, [159, [199]], and autonomous agents could also be designed to
explore attacks on ICS. In doing so, autonomous agents would require access to a simulation of
the ICS and a method to quantitatively measure the amount of harm caused by tested attacks.
Such approaches could then be used for generating new datasets for training and testing ML-
based anomaly detection approaches and also used to provide a full-stack security and safety
evaluation for existing ICS at a national-level scale.

8.3 Final summary

The work described in this thesis proposes techniques and guidelines to make anomaly detection
more effective for industrial control systems. Through a combination of qualitative and quan-
titative investigations, I identified various challenges to using machine-learning-based anomaly
detection for ICS in practice and subsequently made recommendations towards mitigating these
challenges. Across the work described in this thesis, a common takeaway is that, although
general-purpose approaches can achieve state-of-the-art results in benchmark settings, these ap-
proaches can be made more effective by adapting their design and application to ICS domains. In
our proposed approaches, I consider the selection of evaluation metrics, practical use cases, envi-
ronment constraints, adoption values, and human factors that distinguish ICS anomaly detection
from general detection tasks. I recommend that proposed approaches for ICS security follow a
similar strategy with ICS-specific design and adaptation. In summary, through a careful consid-
eration of the values and constraints that make ICS anomaly detection unique, this thesis builds
towards a future in which ICS and critical infrastructure are made more secure as the growth of
the capabilities of machine learning and artificial intelligence continues.

100

Appendix A

Survey text used in Chapter

In this Appendix, we show the text used for our survey of ICS experts, which we report on in
Section

Part I - Background

1. What type of industrial control system (ICS) do you operate? (Free response)
2. What is your role in operating this ICS? (Free response)

3. Do you, or does your organization use an anomaly detection system to detect potential
attacks on the ICS you operate? (Yes / No / Not Sure)

4. Do you have any current or prior experience working with anomaly detection systems?
(Yes / No)

5. What method(s) does the anomaly detection system that you have experience with use
to detect anomalies? (choose all that apply: Rule-based anomaly detection, Machine
learning-based anomaly detection, Not sure, Other (please specify))

6. What kind of information does the anomaly detection system that you have experience
with provide you, and what does the human interface look like? (Free response)

7. What aspects of the anomaly detection system that you have experience with are most use-
ful to you when monitoring the system or responding to potential attacks? (Free response)

8. What aspects of the anomaly detection system that you have experience with are most chal-
lenging or confusing to work with when monitoring the system or responding to potential
attacks? (Free response)

Part II - Simulated Output

For the last part of this survey, we describe a simulated attack on the Secure Water Treat-
ment (SWaT) testbed, and outputs from a proposed, machine-learning based anomaly detection
system. In this scenario, the anomaly detection system has detected an anomaly. In addition to
alerting the operator to the occurrence of an anomaly, the system also reports a list of sensors
and actuators that the model predicts to be the cause of the anomaly. Here is the output of the
anomaly detection system for a simulated attack on SWaT: (Table[A.1)

101

Table A.1: Sample output from the detector used in the survey of operators.

Feature =~ Current Value Anomaly Score Alert Level

DPIT301 19.59 10.11 HIGH
MV302 2.00 8.74 HIGH
P302 2.00 2.03 HIGH
FIT201 2.44 0.54 MEDIUM
P203 2.00 0.54 MEDIUM
P101 2.00 0.53 MEDIUM
MV101 2.00 0.49 MEDIUM
FIT101 2.67 0.48 MEDIUM
MV201 2.00 0.46 MEDIUM
P403 1.00 0.45 MEDIUM

Currently, the anomaly detection system is configured to show the top 10 most likely sensors
and actuators to be responsible for the anomaly, out of 34 total sensors. However, it can be
configured to show more or fewer sensors or actuators. The more sensors it shows, the more
likely the sensor or actuator that is the root cause of the anomaly is in the list.

In this next part, we propose several alternative configurations of the system, with different
numbers of sensors/actuators shown.

1.

How useful would an anomaly detection system be if it showed 2 sensors or actuators (out
of 34), with the following error rates? (5 point Likert scale: not at all useful, slightly
useful, moderately useful, very useful, extremely useful)

0e70% e40% o20%

. How useful would an anomaly detection system be if it showed 5 sensors or actuators (out

of 34), with the following error rates? (5 point Likert scale)
e50% e30% e10%

. How useful would an anomaly detection system be if it showed 10 sensors or actuators

(out of 34), with the following error rates? (5 point Likert scale)
040% 020% 5%

How useful would an anomaly detection system be if it showed 20 sensors or actuators
(out of 34), with the following error rates? (5 point Likert scale)
e30% e10% 5%

How useful would an anomaly detection system be if it showed all 34 sensors or actuators?
(5 point Likert scale)

Please explain your responses above: do you think it would be helpful for the anomaly
detection system to display more sensors and actuators with lower error rates, or fewer
sensors and actuators with higher error rates? (Free response)

. Which of these two options would you rather have, for this anomaly detection system?

(Choose one)

* The entire list of sensors and actuators, and anomaly scores and alert levels for all of

102

them

* A list of 10 sensors and actuators the anomaly detection model thinks are most likely
to be the cause of the anomaly, which correctly identifies the root cause 95% of the
time

8. If this anomaly detection system showed 10 sensors and actuators, what percent of the time
does the anomaly detection system need to correctly include the cause of the anomaly for
it to be useful? (0%-100%)

9. If you had an anomaly detection system like this, how would you use the information
provided to find the root cause of the anomaly? How would you integrate it into your
workflow? (Free response)

103

104

Appendix B

Interview scripts used in Chapter

The detailed questions used in our semi-structured interview script are provided below. When
appropriate, we asked follow up questions to participants to encourage further elaboration.

Part I - Background information
Participant demographics:
* What type(s) of ICS do you work on?

* What is your job title?
* How many years of experience do you have with ICS/OT?
* Do you have a background in cybersecurity? Describe/how many years?
* Do you have a background in machine learning? Describe/how many years?
Specifics of ICS:
* What parts of the system are monitored and controlled by PLCs, SCADAs, etc?
* What types of data is collected, how is it collected, and how is it shown to a human?
* Could you describe your day-to-day responsibilities?
Part II - Questions about monitoring and alarms at your organization
Addressing issues in ICS:
* What are examples of anomalies or problems in the process that would raise alarms in your
ICS?
* How are these issues detected?
* When an alarm is raised, what is your role in addressing the situation?

* How do you find out about these situations? (Are you watching an HMI? Do you get
assigned work orders?)

* Who around you is involved in addressing these situations? (Are you managing people
who address it? Are other people analyzing the situation and asking you to investigate?)

Anomaly detection tools:
* What tools or systems does your organization use to detect anomalies?

* Does your system primarily rely on rules, ML, or both?

105

Does your operate on network information (e.g., packets), operations information (e.g.,
sensors and actuators), or both?

Responsibility around anomaly detection:

Who sets up anomaly detectors, rules, or set points? You, other people in your org, outside
vendors?

What types of data sources are used in the monitoring system?
Who is responsible for these sources? How many people in the org are in that role?

What types of actions are commonly taken or expected, based on information from the
monitoring system?

Who is responsible for taking these actions? How many people in the org are in that role?

Responding to anomalies:

L]

How many alarms do you receive, and what proportion of them do you have to manually
investigate?

Do alarms need to be triaged? Is this process difficult?
What starts an investigation of an alarm?

How do you determine if the alarm in question is a false positive? Walk through your
process in making this decision.

Are any tools used to help with diagnosis, what information is provided by this tool?
How is information from this tool used to determine if an alarm is a false positive?
How is information from this tool be used to determine next steps for remediation?

What other information would you need about an alarm to help determine if it is a false
positive or not?

Could parts of this decision be automated? Would you trust it?

General perspectives:

What are the most helpful or useful aspects of the tools you use?
What are the main challenges in detecting and debugging anomalous behavior?

What are the main challenges in working with ICS in general?

Part I1I - Tool adoption

How did your organization decide on the tools it uses for monitoring?

Are there other roles in the organization who measure these things, experiment with tools,
or deploy them?

What properties or metrics were used to distinguish the tools you use from other alterna-
tives?

Are these decisions based on quantitative metrics? If no, then what is it based on?

Once a tool is deployed, do you use any metrics or processes to ensure that it is useful for
your organization?

Suppose a vendor suggests that you try a new tool, what properties would it need to have
for you to consider adopting it?

106

Part IV - Perceptions of Al
* What do you consider to be the pros and cons of using Al-based anomaly detection meth-
ods vs traditional methods for alarms in ICS?
* What improvements would need to be made to Al to make it more trusted by your organi-
zation?
Part V - Miscellaneous
* Is there anything else you wanted to tell us that we didn’t ask about?

107

108

Appendix C

Qualitative codes used in Chapter

We provide our codebook in Table and Table[C.2l The codes shown in Table[C.1] are used
to analyze the responses in part II of our interview script, and the codes shown in Table are
used to analyze the responses in part III and part IV of our interview script; additional codes are
included in Table [C.2] for general themes that emerged, which were not specific to an interview
question.

109

Name of Code Description # Matched
role > OTcybersecurity Performs OT cybersecurity tasks in their role 5
role > alarmResponse Performs alarm response tasks in their role 4
role > engineering Performs engineering tasks in their role 11
role > manager Performs management tasks in their role 6
role > operations Performs operations tasks in their role 4
teamsize Details about team size 6
architecture > usesPLC Organization uses PLCs 12
architecture > usesDCS Organization uses a DCS 5
architecture > usesSCADA Organization uses SCADA 5
architecture > usesHMI Organization uses HMIs 7
architecture > usesMainControlRoom Organization uses a control room 6
architecture > usesSubControlRoom Organization uses multiple control rooms 2
architecture > usesHistorian Organization uses a data historian 7
architecture > detailsPLC Details about how PLCs are used 10
architecture > detailsSCADA Details about how SCADA/DCS are used 14
alarmArch > PLCs Alarms come from PLCs 13
alarmArch > SCADA Alarms come from SCADA/DCS 6
alarmArch > safetySystem Alarms come from a safety system 11
alarmArch > external Alarms come from an external tool 2
alarmDefn > bounds Alarms defined as upper/lower bounds 12
alarmDefn > custom Alarms defined as custom logic 10
alarmRole > operations Operators configure alarms 3
alarmRole > team A team configures alarms 3
alarmRole > vendor A vendor configures alarms 4
alarmTypes > process Alarms for unwanted process values 16
alarmTypes > communication Alarms for communication issues 6
alarmTypes > componentFailure Alarms for component failures 6
alarmTypes > cybersecurity Alarms for cybersecurity issues 3
alarmTypes > physicalSecurity Alarms for physical security issues 3
alarmTypes > other Alarms for other types of issues 5
alarmResponse > triage Details about triage process in alarm response 13
alarmResponse > controlRoom Details about control rooms in alarm response 4
alarmResponse > severity Details about severity levels in alarm response 9
alarmResponse > operations Details about coordination with operators in alarm response 11
alarmResponse > humanFactors Details about human factors in alarm response 6
alarmResponse > Ul Details about user interfaces in alarm response 5
alarmNumber Details about number/rate of alarms 9
alarmPhilosophy Details about what should be an alarm 9
alarmActionability Details about actionability of alarms 4
alarmDiagnosis > challenges Details about challenges when diagnosing alarms 12
alarmDiagnosis > nuisance Details about nuisance alarms when diagnosing alarms 12
alarmDiagnosis > intuition Details about need for intuition when diagnosing alarms 11
alarmDiagnosis > postHoc Details about post hoc analysis of alarms 10
alarmDiagnosis > tools Details about vendor tools when diagnosing alarms 8
alarmDiagnosis > ML Details about using ML to diagnose alarms 3
alarmManage > meeting Details about alarm management meeting 4
alarmManage > testing Details about testing alarms 5
alarmManage > update Details about updating alarms 5

Table C.1: Codes for responses in Part II of our interview script, which focuses on tasks and systems in alarm
workflows. For each code, we provide: its name and structure, its description, and the number of participants
matched to it.

110

Name of Code Description # Matched
tools > barriersCultural Barriers to tool adoption from ICS culture 10
tools > barriersTechnical Barriers to tool adoption from ICS technical limitations 6
tools > peopleExcluded Details about people excluded in adoption 4
tools > peoplelncluded Details about people included in adoption 5
tools > values Details about important values for adoption 16
tools > metrics Details about how metrics are used to evaluate tools 13
Al > positive General positive perceptions of Al 15
Al > positive > saveTime Al will save time 9
Al > positive > complex Al performs complex tasks better than humans 9
Al > positive > exciting Al is novel and exciting 3
Al > negative General negative perceptions of adopting Al 17
Al > negative > trust ICS would not trust Al 11
Al > negative > criticality ICS are too critical for Al 10
Al > negative > complex Parts of ICS are too complex for Al 5
Al > negative > transparency Al decisions are not transparent 16
Al > negative > dataCost Al requires data that we do not have 8
Al > negative > moneyCost Al requires money that we do not have 4
Al > negative > peopleCost Al requires people than we do not have 6
Al > negative > badAl Negative perceptions of Al itself 5
Al > conceptual Conceptual models of Al 18
Al > conceptual > LLM Talked about LLMs 8
Al > conceptual > neuralNet Talked about neural networks 5
Al > conceptual > linear Talked about linear regression or classification 3
Al > conceptual > prediction Talked about data for Al predictions generally 6
Al > conceptual > training Talked about data for Al training generally 12
Al > useCase > assistant Suggest to use Al as an assistant 7
Al > useCase > optimizeProcess Suggest to use Al to optimize process 8
Al > useCase > optimizeAlarms Suggest to use Al to optimize alarm workflows 8
Al > useCase > maintenance Suggest to use Al for system maintenance 3
Al > recommendations Recommendations for how Al should improve 8
external > alarms An external party performs part of alarm workflow actions 1
external > implementation An external party implements part of the alarm workflow 4
external > detailsExternal Details about contracts with external parties 9
comparelndustry > cultural Comparing ICS industries based on cultural differences 5
comparelndustry > longitudinal Comparing ICS based on trends over time 6
comparelndustry > size Comparing ICS based on their size 5
comparelndustry > technical Comparing ICS industries based on technical differences 4
misc > cybersecurityPerceptions Current cybersecurity perceptions in ICS 9
misc > cybersecurityPractices Current cybersecurity practices in ICS 9
misc > regulations Government regulations affecting ICS 7
misc > cultureClash IT/OT culture clash 8
misc > painPeople Personnel issues affecting ICS 8
misc > painTechnical Technical issues affecting ICS 9

Table C.2: Codes for responses in Part III and Part IV of our interview scripts, which focus on vendor tool adop-
tion (Part III) and perceptions of Al (Part IV). We also include codes for other miscellaneous themes, such as
cross-industry and cross-functional pain points. For each code, we provide: its name and structure, its descrip-
tion, and the number of participants matched to it.

111

112

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

Syed Ghazanfar Abbas, Muslum Ozgur Ozmen, Abdulellah Alsaheel, Arslan Khan,
Z. Berkay Celik, and Dongyan Xu. SAIN: Improving ICS attack detection sensitivity via
State-Aware invariants. In Proceedings of the 33rd USENIX Security Symposium, 2024.

Maged Abdelaty, Roberto Doriguzzi-Corin, and Domenico Siracusa. DAICS: A deep
learning solution for anomaly detection in industrial control systems. arXiv:2009.06299,

2020. 4.3.1}

Lisa Abele, Maja Anic, Tim Gutmann, Jens Folmer, Martin Kleinsteuber, and Birgit
Vogel-Heuser. Combining knowledge modeling and machine learning for alarm root cause
analysis. IFAC Proceedings Volumes, 46(9):1843-1848, 2013. 3.2] 8.1} [8.2]

Ahmed A. Abokifa, Kelsey Haddad, Cynthia S. Lo, and Pratim Biswas. Detection of
Cyber Physical Attacks on Water Distribution Systems via Principal Component Analysis

and Artificial Neural Networks. 2017. 4.1} 4.2 [6.1}[6.2.2]

Danial Abshari and Meera Sridhar. A survey of anomaly detection in cyber-physical
systems. arXiv preprint arXiv:2502.13256, 2025. [1.1]

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on ex-
plainable artificial intelligence (XAI). IEEE access, 6, 2018. 2.5

Sridhar Adepu and Aditya Mathur. Distributed attack detection in a water treatment plant:
Method and case study. IEEE Transactions on Dependable and Secure Computing, 18(1),
2021. 16.5.2)

Sridhar Adepu, Nianyu Li, Eunsuk Kang, and David Garlan. Modeling and analysis of
explanation for secure industrial control systems. ACM Transactions on Autonomous and
Adaptive Systems, 17(3-4), 2022. [1]

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. WADI: a water
distribution testbed for research in the design of secure cyber physical systems. In Pro-
ceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water

Networks, 2017. 5.2.115.2.1[5.6.1

Chuadhry Mujeeb Ahmed, Gauthama Raman MR, and Aditya P Mathur. Challenges in
machine learning based approaches for real-time anomaly detection in industrial control
systems. In Proceedings of the 6th ACM Cyber-Physical System Security Workshop, 2020.
il

Safaa O Al-Mamory and Hongli Zhang. Intrusion detection alarms reduction using root

113

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

cause analysis and clustering. Computer Communications, 32(2), 2009.

Bushra A. Alahmadi, Louise Axon, and Ivan Martinovic. 99% false positives: A quali-
tative study of SOC analysts’ perspectives on security alarms. In Proceedings of the 31st

USENIX Security Symposium, 2022. [I.1}[3.3][5.5] B.11[8.2]

Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhancing one-class sup-
port vector machines for unsupervised anomaly detection. In Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description, 2013.

Liat Antwarg, Ronnie Mindlin Miller, Bracha Shapira, and Lior Rokach. Explaining
anomalies detected by autoencoders using shapley additive explanations. Expert systems
with applications, 186, 2021. [5.2.3|

Wissam Aoudi, Mikel Iturbe, and Magnus Almgren. Truth will out: Departure-based
process-level detection of stealthy attacks on control systems. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, 2018. [1} 2.4} [2.4]

Giovanni Apruzzese, Pavel Laskov, Edgardo Montes de Oca, Wissam Mallouli, Luis
Brdalo Rapa, Athanasios Vasileios Grammatopoulos, and Fabio Di Franco. The role of
machine learning in cybersecurity. Digital Threats: Research and Practice, 4(1), 2023.

L1

Giovanni Apruzzese, Pavel Laskov, and Johannes Schneider. SoK: Pragmatic assessment
of machine learning for network intrusion detection. In Proceedings of the IEEE 8th
European Symposium on Security and Privacy, 2023. [I1]

Mohammed Asiri, Neetesh Saxena, Rigel Gjomemo, and Pete Burnap. Understanding
indicators of compromise against cyber-attacks in industrial control systems: A security
perspective. ACM Transactions on Cyber-Physical Systems, 2023.

Marco Aste, Massimo Boninsegna, Antonino Freno, and Edmondo Trentin. Techniques
for dealing with incomplete data: a tutorial and survey. Pattern Analysis and Applications,

18(1), 2015.

Rima Asmar Awad, Saeed Beztchi, Jared M. Smith, Bryan Lyles, and Stacy Prowell.
Tools, techniques, and methodologies: A survey of digital forensics for SCADA systems.
In Proceedings of the 4th Annual Industrial Control System Security Workshop, 2018.

Michael Bailey, David Dittrich, Erin Kenneally, and Doug Maughan. The menlo report.
IEEE Security & Privacy, 10(2), 2012.

Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S. Lasecki, Daniel S. Weld, and Eric
Horvitz. Beyond accuracy: The role of mental models in human-Al team performance.
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 7(1):

2-11, 2019,

Andreas Bathelt, N Lawrence Ricker, and Mohieddine Jelali. Revision of the Tennessee
Eastman process model. IFAC-PapersOnLine, 48(8):309-314, 2015. [[.T|2.2] 5.2.1,5.2.1]
6.5, 1]

Margret Bauer, Alexander Horch, Lei Xie, Mohieddine Jelali, and Nina Thornhill. The

114

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

current state of control loop performance monitoring—a survey of application in industry.
Journal of Process Control, 38, 2016. 3.3 [6.1] [8.1]

Jack Beerman, David Berent, Zach Falter, and Suman Bhunia. A review of colonial
pipeline ransomware attack. In Proceedings of the IEEE/ACM 23rd International Sym-
posium on Cluster, Cloud and Internet Computing Workshops, 2023. [I]

Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and Nader Me-
skin. Cybersecurity for industrial control systems: A survey. Computers & Security, 89:
101677, 2020.

Tristan Bilot, Baoxiang Jiang, Zefeng Li, Nour El Madhoun, Khaldoun Al Agha, Anis
Zouaoui, and Thomas Pasquier. Sometimes simpler is better: A comprehensive analysis

of State-of-the-Art Provenance-Based intrusion detection systems. In Proceedings of the
34th USENIX Security Symposium, 2025.

Benjamin Bowman, Craig Laprade, Yuede Ji, and H. Howie Huang. Detecting lateral
movement in enterprise computer networks with unsupervised graph Al. In Proceedings
of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses,

2020. 24 B2

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2), 2006.

Zana Bucinca, Maja Barbara Malaya, and Krzysztof Z Gajos. To trust or to think: cogni-
tive forcing functions can reduce overreliance on Al in Al-assisted decision-making. ACM
on Human-Computer Interaction, S(CSCW1), 2021.

Anna L. Buczak and Erhan Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. /[EEE Communications Surveys & Tutorials, 18(2),

2016. [L.1]

Alvaro A Cardenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang, and
Shankar Sastry. Attacks against process control systems: risk assessment, detection, and
response. In Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security, 2011. 5.2.11[5.4.3,[6.5.2,6.6.1]

7. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated IoT safety and
security analysis. In Proceedings of the 2018 USENIX Annual Technical Conference,
2018. [L.1]

Valerie Chen, Q Vera Liao, Jennifer Wortman Vaughan, and Gagan Bansal. Understanding
the role of human intuition on reliance in human-Al decision-making with explanations.
ACM on Human-computer Interaction, 7(CSCW2), 2023.

Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang,
Dongyan Xu, and Xinyan Deng. Detecting attacks against robotic vehicles: A control
invariant approach. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018. @

Jason D. Christopher. Sans 2024 state of ICS/OT cybersecurity. SANS Institute, 2024. [1]

115

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 2.4]

Oakley Cox. Three ways Al secures OT & ICS from cyber attacks, 2024. https:
//www.darktrace.com/blog/three-ways—ai-secures—operational
—-technology-ot—-industrial-control-systems—-ics—from-cyber-a

ttacks.

Mary L. Cummings. Rethinking the maturity of artificial intelligence in safety-critical
settings. Al Magazine, 42(1), 2021. [8.1]

Kelton A.P. da Costa, Jodo P. Papa, Celso O. Lisboa, Roberto Munoz, and Victor Hugo C.

de Albuquerque. Internet of things: A survey on machine learning-based intrusion detec-
tion approaches. Computer Networks, 151(C), 2019.

Luke Darlow, Qiwen Deng, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Artjom
Joosen, Adam Barker, and Amos Storkey. DAM: Towards a foundation model for time
series forecasting. arXiv preprint arXiv:2407.17880, 2024. [8.2]

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation
model for time-series forecasting. In Forty-first International Conference on Machine
Learning, 2024. [8.2]

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multi-
variate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):

4027-4035, 2021. 1} 2.4 2.4, 5.2.115.2.4, 6.11 [6.2.2, [6.3.1} [6.4, [6.5.11 [7.1]

Berend Denkena, M-A Dittrich, Hendrik Noske, and Matthias Witt. Statistical approaches
for semi-supervised anomaly detection in machining. Production Engineering, 14:385—

393, 2020.

Audrey Der, Chin-Chia Michael Yeh, Yan Zheng, Junpeng Wang, Zhongfang Zhuang,
Liang Wang, Wei Zhang, and Eamonn Keogh. PUPAE: Intuitive and actionable explana-
tions for time series anomalies. In Proceedings of the 2024 SIAM International Conference
on Data Mining, 2024.

Willian Dimitrov and Svetlana Syarova. Analysis of the functionalities of a shared ICS
security operations center. In Big Data, Knowledge and Control Systems Engineering,

2019.

Wenbo Ding, Hongxin Hu, and Long Cheng. IoTSafe: Enforcing safety and security
policy with real 10T physical interaction discovery. In Proceedings of the 28th Annual
Network and Distributed System Security Symposium, 2021. [1.1]

James J Downs and Ernest F Vogel. A plant-wide industrial process control problem.
Computers & Chemical Engineering, 17(3):245-255, 1993. 2.2}[5.2.1,[6.5.1]

Upol Ehsan, Samir Passi, Q Vera Liao, Larry Chan, [-Hsiang Lee, Michael Muller, and
Mark O Riedl. The who in XAI: How Al background shapes perceptions of Al expla-
nations. In Proceedings of the 2024 CHI Conference on Human Factors in Computing

Systems, 2024.

116

https://www.darktrace.com/blog/three-ways-ai-secures-operational-technology-ot-industrial-control-systems-ics-from-cyber-attacks
https://www.darktrace.com/blog/three-ways-ai-secures-operational-technology-ot-industrial-control-systems-ics-from-cyber-attacks
https://www.darktrace.com/blog/three-ways-ai-secures-operational-technology-ot-industrial-control-systems-ics-from-cyber-attacks
https://www.darktrace.com/blog/three-ways-ai-secures-operational-technology-ot-industrial-control-systems-ics-from-cyber-attacks

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Shereen Elsayed, Daniela Thyssens, Ahmed Rashed, Hadi Samer Jomaa, and Lars
Schmidt-Thieme. Do we really need deep learning models for time series forecasting?
arXiv preprint arXiv:2101.02118, 2021. [3.1]

Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith Cranor. Exploring
how privacy and security factor into IoT device purchase behavior. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, 2019.

Alessandro Erba and Nils Ole Tippenhauer. Assessing model-free anomaly detection in
industrial control systems against generic concealment attacks. In Proceedings of the 38th
Annual Computer Security Applications Conference, 2022.16.5.2]16.6.3[6.6.3]

Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani, Michele Carmi-
nati, Stefano Zanero, and Nils Ole Tippenhauer. Constrained concealment attacks against
reconstruction-based anomaly detectors in industrial control systems. In Proceedings of

the 36th Annual Computer Security Applications Conference, 2020. A 3.1 4.3.1 4.1, 4.2]
[6.6.3,[6.6.3]

Alessandro Erba, Andres F. Murillo, Riccardo Taormina, Stefano Galelli, and Nils Ole
Tippenhauer. On practical realization of evasion attacks for industrial control systems. In
Proceedings of the 2024 Workshop on Re-design Industrial Control Systems with Security,

2024.2.216.5.11[6.6.3,[6.6.3]

G Erion, JD Janizek, P Sturmfels, S Lundberg, and SI Lee. Improving performance of
deep learning models with axiomatic attribution priors and expected gradients. Nature

Machine Intelligence, 3, 2021.

Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and Deeph Chana. A systematic
framework to generate invariants for anomaly detection in industrial control systems. In
Proceedings of the 26th Annual Network and Distributed System Security Symposium,

2019. A BRI AT A3 IA2A32HA42ES53

Pavel Filonov, Fedor Kitashov, and Andrey Lavrentyev. RNN-based early cyber-attack
detection for the Tennessee Eastman process. arXiv preprint arXiv:1709.02232, 2017.

245.2.2

Chenglong Fu, Qiang Zeng, and Xiaojiang Du. HAWatcher: Semantics-Aware anomaly
detection for appified smart homes. In Proceedings of the 30th USENIX Security Sympo-
sium, 2021. [1.1]

Clement Fung, Shreya Srinarasi, Keane Lucas, Hay Bryan Phee, and Lujo Bauer. Per-
spectives from a comprehensive evaluation of reconstruction-based anomaly detection in
industrial control systems. In Proceedings of the 27th European Symposium on Research

in Computer Security, 2022. 4]

Clement Fung, Eric Zeng, and Lujo Bauer. Attributions for ML-based ICS anomaly detec-
tion: From theory to practice. In Proceedings of the 31st Annual Network and Distributed

System Security Symposium, 2024. [1.2][5] [6.6] [6.6.3] [6.6.3|

Clement Fung, Eric Zeng, and Lujo Bauer. Adopting Al to protect industrial control
systems: Assessing challenges and opportunities from the operators’ perspective. In Pro-

117

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

ceedings of the Twenty-First Symposium on Usable Privacy and Security, 2025.

Andrea Gallardo, Robert Erbes, Katya Le Blanc, Lujo Bauer, and Lorrie Faith Cranor.
Interdisciplinary approaches to cybervulnerability impact assessment for energy critical
infrastructure. In Proceedings of the 2024 CHI Conference on Human Factors in Comput-

ing Systems, 2024.[3.3][3.3]

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. A survey of fault diagnosis and
fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based ap-
proaches. IEEE Transactions on Industrial Electronics, 62(6), 2015. [3.2]

Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cintuglu, Ahmad-Reza Sadeghi, Osama A
Mohammed, and Saman A Zonouz. Hey, my malware knows physics! attacking PLCs
with physical model aware rootkit. In Proceedings of the 24th Annual Network and Dis-
tributed System Security Symposium, 2017.

Astha Garg, Wenyu Zhang, Jules Samaran, Ramasamy Savitha, and Chuan-Sheng Foo. An
evaluation of anomaly detection and diagnosis in multivariate time series. I[EEE Transac-
tions on Neural Networks and Learning Systems, 33(6), 2022. [3.1]

Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. TimeGPT-1. arXiv preprint
arXiv:2310.03589, 2023. 8.2

Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal, Justin
Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. A survey of physics-
based attack detection in cyber-physical systems. ACM Computing Surveys, 51(4):1-36,

2018. M[T.116.7,[7.5.2]

J. Goh, S. Adepu, M. Tan, and Z. S. Lee. Anomaly detection in cyber physical systems
using recurrent neural networks. In Proceedings of the 18th International Symposium on
High Assurance Systems Engineering, 2017. 4.1} [4.2]

Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A dataset to
support research in the design of secure water treatment systems. In Proceedings of the
11th International Conference on Critical Information Infrastructures Security, 2016.

R2EIE325.215.215.6.16.5.116.52

Benjamin Green, Marina Krotofil, and Ali Abbasi. On the significance of process com-
prehension for conducting targeted ICS attacks. In Proceedings of the 2017 Workshop on
Cyber-Physical Systems Security and Privacy, 2017. [[5.4.2]

Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. LEMNA:
Explaining deep learning based security applications. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018. 2.5 5.1} [5.2.3]

Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro Acquisti, Lorrie Faith
Cranor, Norman Sadeh, and Florian Schaub. it’s a scavenger hunt? Usability of websites’
opt-out and data deletion choices. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems, 2020.

Dina HadZiosmanovi¢, Robin Sommer, Emmanuele Zambon, and Pieter H. Hartel.
Through the eye of the PLC: Semantic security monitoring for industrial processes. In

118

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Proceedings of the 30th Annual Computer Security Applications Conference, 2014.
24245.226.51

Anna Hall and Vivek Agarwal. Barriers to adopting artificial intelligence and machine
learning technologies in nuclear power. Progress in Nuclear Energy, 175, 2024. [1]

Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang, Jiahai
Yang, Xingang Shi, and Xia Yin. DeepAlID: Interpreting and improving deep learning-
based anomaly detection in security applications. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021. [3.2]

Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han Zhang,
Zhihua Wang, Minghui Jin, Jiahai Yang, Xingang Shi, and Xia Yin. Anomaly detection
in the open world: Normality shift detection, explanation, and adaptation. In Proceedings
of the 30th Annual Network and Distributed System Security Symposium, 2023.

Siho Han and Simon S. Woo. Learning sparse latent graph representations for anomaly
detection in multivariate time series. In Proceedings of the 28th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, 2022. [T} 2.4 2.4, [6.1,[6.2.2 [6.3.1} [6.4 [6.5.1]

Niclas Hellesen, Henrik Torres, and Gaute Wangen. Empirical case studies of the root-
cause analysis method in information security. International Journal On Advances in

Security, 11(1&2), 2018. 3.2, 8.1]

Grant Ho, Mayank Dhiman, Devdatta Akhawe, Vern Paxson, Stefan Savage, Geoffrey M.
Voelker, and David Wagner. Hopper: Modeling and detecting lateral movement. In Pro-
ceedings of the 30th USENIX Security Symposium, 2021. 2.4 [3.2]

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8), 1997. 2.4

Bill R. Hollifield. Understanding & applying the ANSI-ISA 18-2 alarm management
standard. Technical report, Hexagon, 2023.

Chanwoong Hwang and Taejin Lee. E-SFD: Explainable sensor fault detection in the ICS
anomaly detection system. [EEE Access, 9:140470-140486, 2021.[5.1)5.2.3][5.2.3][5.2.4]

5.4.15.6.1]

Won-Seok Hwang, Jeong-Han Yun, Jonguk Kim, and Hyoung Chun Kim. Time-series
aware precision and recall for anomaly detection: Considering variety of detection re-
sult and addressing ambiguous labeling. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management, 2019.
Moses Ike, Kandy Phan, Keaton Sadoski, Romuald Valme, and Wenke Lee. SCAPHY:
Detecting modern ICS attacks by correlating behaviors in SCADA and PHYsical. In
Proceedings of the 2023 IEEE Symposium on Security and Privacy, 2023. [T} [1.]]

J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun. Anomaly detection for a water
treatment system using unsupervised machine learning. In Proceedings of the 2017 IEEE
International Conference on Data Mining Workshops, 2017. 4.1, 4.2 4.3.2] 4.4.1]

Roshni Anna Jacob, Soroush Senemmar, and Jie Zhang. Fault diagnostics in shipboard
power systems using graph neural networks. In Proceedings of the IEEE 13th Interna-

119

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

tional Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives,

2021. 3.2

Arthur S. Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit Gupta,
and Lisandro Z. Granville. AI/ML for network security: The emperor has no clothes. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security, 2022. 1.1, [3.2]

Nicholas Jeffrey, Qing Tan, and José R. Villar. A review of anomaly detection strategies
to detect threats to cyber-physical systems. Electronics, 12(15), 2023. [1.]]

Jiaojiao Jiang, Sheng Wen, Shui Yu, Yang Xiang, and Wanlei Zhou. Identifying propaga-
tion sources in networks: State-of-the-art and comparative studies. IEEE Communications
Surveys & Tutorials, 19(1), 2017. 3.2} 8.1]

Wenhao Jiang and Yuebin Bai. APGNN: Alarm propagation graph neural network for
fault detection and alarm root cause analysis. Computer Networks, 220:109485, 2023.

Albert T. Jones and Charles R. McLean. A proposed hierarchical control model for auto-
mated manufacturing systems. Journal of Manufacturing Systems, 5(1), 1986.

Klaus Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM
Transactions on Information and System Security, 6(4), 2003.

Eunsuk Kang, Sridhar Adepu, Daniel Jackson, and Aditya P. Mathur. Model-based secu-
rity analysis of a water treatment system. In Proceedings of the 2nd International Work-
shop on Software Engineering for Smart Cyber-Physical Systems, 2016. []]

Eamonn Keogh. Irrational exuberance: why we should not believe 95% of papers on time
series anomaly detection. Keynote at the 7th SIGKDD workshop on mining and learning
from time series at SIGKDD 2021, 2021. [3.1]

Jonguk Kim, Jeong-Han Yun, and Hyoung Chun Kim. Anomaly detection for industrial
control systems using sequence-to-sequence neural networks. In Proceedings of the 5th
Workshop on the Security of Industrial Control Systems and of Cyber-Physical Systems,

2019. E1 B2 E32)

Taewook Kim, Hyomin Han, Eytan Adar, Matthew Kay, and John Joon Young Chung.
Authors’ values and attitudes towards Al-bridged scalable personalization of creative lan-
guage arts. In Proceedings of the 2024 CHI Conference on Human Factors in Computing

Systems, 2024.

Isaiah J. King, Ramiro Ramirez, Benjamin Bowman, and H. Howie Huang. Trail: A
knowledge graph-based approach for attributing advanced persistent threats. In Proceed-
ings of the IEEE 41st International Conference on Data Engineering, 2025. [3.2]

Abigail MY Koay, Ryan K L Ko, Hinne Hettema, and Kenneth Radke. Machine learning
in industrial control system (ICS) security: current landscape, opportunities and chal-
lenges. Journal of Intelligent Information Systems, 60(2), 2023.

Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan Shoshitaishvili, Ziming Zhao, Adam
Doupé, and Gail-Joon Ahn. Matched and mismatched SOCs: A qualitative study on

120

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

security operations center issues. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019. [3.3]

Moshe Kravchik and Asaf Shabtai. Detecting cyber attacks in industrial control systems
using convolutional neural networks. In Proceedings of the 2018 Workshop on Cyber-

Physical Systems Security and Privacy, 2018. @ 4.1} 4.1 4.3.11 4.2 4421 4.4.2)[4.5.3
Moshe Kravchik and Asaf Shabtai. Efficient cyber attacks detection in industrial control
systems using lightweight neural networks. arXiv:1907.01216, 2019. [1] 2.4, 2.4, Bl F.2
432 5.1 521522523 531531541 5.6.1,[7.4.1

Moshe Kravchik and Asaf Shabtai. Efficient cyber attack detection in industrial control
systems using lightweight neural networks and PCA. IEEE Transactions on Dependable

and Secure Computing, 19(4), 2022. [I 2.4 @ A1 @31 B.1 B3.21F.4.2 6.1, [6.2.2] [6.4]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,

25,2012.[2.4,[6.2.2]
Marina Krotofil and Jason Larsen. Rocking the pocket book: Hacking chemical plants,

2015. 521,543

Marina Krotofil, Jason Larsen, and Dieter Gollmann. The process matters: Ensuring
data veracity in cyber-physical systems. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’15, 2015. [I]

David Kushner. The real story of Stuxnet. IEEE Spectrum, 53(3), 2013. m

Olav Lamberts, Konrad Wolsing, Eric Wagner, Jan Pennekamp, Jan Bauer, Klaus Wehrle,
and Martin Henze. SoK: Evaluations in industrial intrusion detection research. Journal of

Systems Research, 3(1),2023. [I[L 4.1, [6.6.1 [6.6.1} [7.5.1 [7.5.2

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection algorithms—
the Numenta anomaly benchmark. In Proceedings of the 14th International Conference

on Machine Learning and Applications, 2015. 3.1 B.1 A.5.1 F.5.21 4.5.2) 4.5.2

D. Lavrova, D. Zegzhda, and A. Yarmak. Using GRU neural network for cyber-attack
detection in automated process control systems. In Proceedings of the 7th IEEE Inter-
national Black Sea Conference on Communications and Networking, 2019. 2.4, 2.4 [6.1]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436-444, 2015. 2.4

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. MAD-
GAN: Multivariate anomaly detection for time series data with generative adversarial net-
works. In Proceedings of the 28th International Conference on Artificial Neural Networks,

2019. B B2 [7]]

Q Vera Liao, Daniel Gruen, and Sarah Miller. Questioning the Al: informing design
practices for explainable Al user experiences. In Proceedings of the 2020 CHI conference
on Human Factors in Computing Systems, 2020.

121

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Q Vera Liao, Hartharan Subramonyam, Jennifer Wang, and Jennifer Wortman Vaughan.
Designerly understanding: Information needs for model transparency to support design
ideation for Al-powered user experience. In Proceedings of the 2023 CHI conference on
Human Factors in Computing Systems, 2023.

Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. TABOR: A graphical model-
based approach for anomaly detection in industrial control systems. In Proceedings of
the 2018 Asia Conference on Computer and Communications Security, 2018. (I} 2.4]
Siyuan Liu, Lei Chen, and Lionel M. Ni. Anomaly detection from incomplete data. ACM
Transactions on Knowledge Discovery from Data, 9(2), 2014.

Yao Liu, Peng Ning, and Michael K. Reiter. False data injection attacks against state
estimation in electric power grids. ACM Transactions on Information and System Security,

2011. [} 2]

Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe Franks, Marius Kloft,
and Klaus Robert Muller. Explainable deep one-class classification. In Proceedings of the
Ninth International Conference on Learning Representations, 2021. [6.2.]]

Sara Ljungblad, Yemao Man, Mehmet Aydin Baytas, Mafalda Gamboa, Mohammad
Obaid, and Morten Fjeld. What matters in professional drone pilots’ practice? an inter-
view study to understand the complexity of their work and inform human-drone interaction
research. In Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems, 2017.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Danfeng Yao. Deep learning-based
anomaly detection in cyber-physical systems: Progress and opportunities. ACM Comput-

ing Surveys, 54(5):1-36, 2021.

Eric L. Manibardo, Ibai Lafa, and Javier Del Ser. Deep learning for road traffic forecast-
ing: Does it make a difference? IEEE Transactions on Intelligent Transportation Systems,

23(7),2022. [3.1]

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reliability and inter-rater relia-
bility in qualitative research: Norms and guidelines for CSCW and HCI practice. ACM on
Human-Computer Interaction, 3(CSCW), 2019.

Stephen McLaughlin, Charalambos Konstantinou, Xueyang Wang, Lucas Davi, Ahmad-

Reza Sadeghi, Michail Maniatakos, and Ramesh Karri. The cybersecurity landscape in
industrial control systems. Proceedings of the IEEE, 104, 2016.

Yifei Ming, Hang Yin, and Yixuan Li. On the impact of spurious correlation for out-of-
distribution detection. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(9):10051-10059, 2022. [6.4]

Jaron Mink, Hadjer Benkraouda, Limin Yang, Arridhana Ciptadi, Ali Ahmadzadeh,
Daniel Votipka, and Gang Wang. Everybody’s got ML, tell me what else you have: Prac-

122

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

titioners’ perception of ML-based security tools and explanations. In Proceedings of the
2023 IEEE Symposium on Security and Privacy, 2023. [[.1}[3.3][6.1] B.11[8.2]

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an ensemble
of autoencoders for online network intrusion detection. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium, 2018. [1.1] 2.4]

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. When to show a
suggestion? integrating human feedback in Al-assisted programming. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(9):10137-10144, 2024.

Andres Murillo, Riccardo Taormina, Nils Tippenhauer, and Stefano Galelli. Co-simulating
physical processes and network data for high-fidelity cyber-security experiments. In Pro-
ceedings of the Sixth Annual Industrial Control System Security Workshop, 2021. [2.2]
6.5.1]

Azga Nadeem, Daniél Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baumgartner,
and Sicco Verwer. SoK: Explainable machine learning for computer security applications.
In Proceedings of the 8th IEEE European Symposium on Security and Privacy, 2023. [I.1]
3.2i

Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vin-
cent Poor. Federated learning for internet of things: A comprehensive survey. [EEE
Communications Surveys and Tutorials, 23(3), 2021. 8.2

Megan Nyre-Yu, Elizabeth Morris, Michael Smith, Blake Moss, and Charles Smutz. Ex-
plainable ai in cybersecurity operations: Lessons learned from XAI tool deployment. In
Proceedings of the Usable Security and Privacy Symposium, 2022. [3.3]

Cliodhna O’Connor and Helene Joffe. Intercoder reliability in qualitative research: De-
bates and practical guidelines. International Journal of Qualitative Methods, 19, 2020.

Sean Oesch, Robert Bridges, Jared Smith, Justin Beaver, John Goodall, Kelly Huffer,
Craig Miles, and Dan Scofield. An assessment of the usability of machine learning based
tools for the security operations center. In Proceedings of the 2020 International Confer-
ences on Internet of Things and IEEE Green Computing and Communications and IEEE
Cyber, Physical and Social Computing and IEEE Smart Data and IEEE Congress on Cy-
bermatics, 2020. [3.3]

Dean Parsons. SANS ICS/OT cybersecurity survey: 2023’s challenges and tomorrow’s
defenses. SANS Institute, 2023.

Angel Luis Perales Gomez, Lorenzo Fernandez Maimo, Alberto Huertas Celdran, and
Félix J. Garcia Clemente. MADICS: A methodology for anomaly detection in industrial

control systems. Symmetry, 12(10), 2020. [I| 2.4 @1 4.2l 5.2.1}[5.2.2] [6.1} [6.1] [6.5.2]

Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas, and
Zhigiang Lin. SAVIOR: Securing autonomous vehicles with robust physical invariants. In
Proceedings of the 29th USENIX Security Symposium, 2020.

Nanda Rani, Bikash Saha, and Sandeep Kumar Shukla. A comprehensive survey of ad-

123

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

vanced persistent threat attribution: Taxonomy, methods, challenges and open research
problems. arXiv preprint arXiv:2409.11415, 2024. 3.2]

Charvi Rastogi, Liu Leqi, Kenneth Holstein, and Hoda Heidari. A taxonomy of human
and ML strengths in decision-making to investigate human-ML complementarity. 11(1),
2023.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016. [2.5] [5.1]
5.2.3]

Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. MLaaS: Machine learn-
ing as a service. In Proceedings of the IEEE [4th International Conference on Machine
Learning and Applications, 2015.

Robert M. Lee, Michael J. Assante and Tim Conway. Analysis of the cyber attack on the
Ukrainian power grid. Electricity Information Sharing and Analysis Center, 388, 2016.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Sid-
diqui, Alexander Binder, Emmanuel Miiller, and Marius Kloft. Deep one-class classifi-

cation. In Proceedings of the 35th International Conference on Machine Learning, 2018.
6.2.11

Aakanksha Saha, James Mattei, Jorge Blasco, Lorenzo Cavallaro, Daniel Votipka, and
Martina Lindorfer. Expert insights into advanced persistent threats: analysis, attribution,
and challenges. In Proceedings of the 34th USENIX Security Symposium, 2025. [3.3|

Imran Sajjad, Daniel D. Dunn, Rajnikant Sharma, and Ryan Gerdes. Attack mitigation in
adversarial platooning using detection-based sliding mode control. In Proceedings of the
First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy, 2015. []]

Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield,
Bernadette Bartlam, Heather Burroughs, and Clare Jinks. Saturation in qualitative re-

search: exploring its conceptualization and operationalization. Quality & quantity, 52:
1893-1907, 2018.

Martin A Sehr, Marten Lohstroh, Matthew Weber, Ines Ugalde, Martin Witte, Joerg Nei-
dig, Stephan Hoeme, Mehrdad Niknami, and Edward A Lee. Programmable logic con-
trollers in the context of industry 4.0. IEEE Transactions on Industrial Informatics, 17(5),

2020.

Soroush Senemmar and Jie Zhang. Deep learning-based fault detection, classification,
and locating in shipboard power systems. In Proceedings of the 2021 IEEE Electric Ship
Technologies Symposium, 2021. [3.2]

Haniyeh Seyed Alinezhad, Mohammad Hossein Roohi, and Tongwen Chen. A review of
alarm root cause analysis in process industries: Common methods, recent research status
and challenges. Chemical Engineering Research and Design, 188:846-860, 2022. [3.2]
8.1

Dmitry Shalyga, Pavel Filonov, and Andrey Lavrentyev. Anomaly detection for wa-

124

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

ter treatment system based on neural network with automatic architecture optimization.
arXiv:1807.07282,2018. 4.1, 4.3.1, 4.2

Wenli Shang, Peng Zeng, Ming Wan, Lin Li, and Panfeng An. Intrusion detection al-
gorithm based on OCSVM in industrial control system. Security and Communication

Networks, 9(10), 2016.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a
crime: Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, 2016. [5.2.1]

Junjie Shen, Ningfei Wang, Ziwen Wan, Yunpeng Luo, Takami Sato, Zhisheng Hu,
Xinyang Zhang, Shengjian Guo, Zhenyu Zhong, Kang Li, Ziming Zhao, Chunming Qiao,
and Qi Alfred Chen. SoK: On the semantic Al security in autonomous driving. arXiv
preprint arXiv:2203.05314, 2022.

Yasser Shoukry, Paul Martin, Yair Yona, Suhas Diggavi, and Mani Srivastava. PyCRA:
Physical challenge-response authentication for active sensors under spoofing attacks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications

Security, 2015. [T} [1.1]

Alex Shultz. For the first time, artificial intelligence is being used at a nuclear power plant:
California’s diablo canyon. The Markup, 2025. https://themarkup.org/arti
ficial-intelligence/2025/04/08/for-the-first-time—-artificia
l-intelligence-is—-being-used-at—-a-nuclear—-power—-plant—-cal
ifornias—-diablo—-canyon.[/.1

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convo-

lutional neural networks on graphs. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint

arXiv:1312.6034,2013. 2.5| 5.1, [5.2.3]

Brian Singer, Amritanshu Pandey, Shimiao Li, Lujo Bauer, Craig Miller, Lawrence Pi-
leggi, and Vyas Sekar. Shedding light on inconsistencies in grid cybersecurity: Discon-
nects and recommendations. In Proceedings of the 2023 IEEE Symposium on Security
and Privacy, 2023. [3.3]

Brian Singer, Keane Lucas, Lakshmi Adiga, Meghna Jain, Lujo Bauer, and Vyas Sekar.
On the feasibility of using LLMs to autonomously execute multi-host network attacks.
arXiv preprint arXiv:2501.16466, 2025. [3.2]

Brian Singer, Yusuf Saquib, Lujo Bauer, and Vyas Sekar. Perry: A high-level framework
for accelerating cyber deception experimentation. In Proceedings of the 28th International
Symposium on Research in Attacks, Intrusions and Defenses, 2025.

N. Singh and C. Olinsky. Demystifying Numenta anomaly benchmark. In Proceedings of
the 2017 International Joint Conference on Neural Networks, 2017.

Pooja Singh and Lalit Kumar Singh. Instrumentation and control systems design for nu-

125

https://themarkup.org/artificial-intelligence/2025/04/08/for-the-first-time-artificial-intelligence-is-being-used-at-a-nuclear-power-plant-californias-diablo-canyon
https://themarkup.org/artificial-intelligence/2025/04/08/for-the-first-time-artificial-intelligence-is-being-used-at-a-nuclear-power-plant-californias-diablo-canyon
https://themarkup.org/artificial-intelligence/2025/04/08/for-the-first-time-artificial-intelligence-is-being-used-at-a-nuclear-power-plant-californias-diablo-canyon
https://themarkup.org/artificial-intelligence/2025/04/08/for-the-first-time-artificial-intelligence-is-being-used-at-a-nuclear-power-plant-californias-diablo-canyon

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

clear power plant: An interview study with industry practitioners. Nuclear Engineering
and Technology, 53(11), 2021. [3.3 [8.1]

Joseph Slowik. Evolution of ICS attacks and the prospects for future disruptive events.
Threat Intelligence Centre Dragos Inc, 2019. [I}[2.1]

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

23 5.115.2.35.3.2

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing and Management, 45(4), 2009. [@.1]

Lei Song, Chuheng Zhang, Li Zhao, and Jiang Bian. Pre-trained large language models
for industrial control. arXiv preprint arXiv:2308.03028, 2023.

Kirti Soni, Nishant Kumar, Anjali S Nair, Parag Chourey, Nirbhow Jap Singh, and Ravin-
der Agarwal. Artificial intelligence: Implementation and obstacles in industry 4.0. In
Handbook of Metrology and Applications. Springer, 2022. (1]

Bram Steenwinckel, Dieter De Paepe, Sander Vanden Hautte, Pieter Heyvaert, Mohamed
Bentefrit, Pieter Moens, Anastasia Dimou, Bruno Van Den Bossche, Filip De Turck, Sofie
Van Hoecke, and Femke Ongenae. FLAGS: A methodology for adaptive anomaly de-
tection and root cause analysis on sensor data streams by fusing expert knowledge with
machine learning. Future Generation Computer Systems, 116:30-48, 2021. [8.2]

Keith Stouffer. Guide to industrial control systems (ICS) security. NIST special publica-
tion, 800(82), 2011. 2.1]

Eric Stranz and Stefan Nohe. NERC CIP in the real world on a real budget. In Proceedings
of the Minnesota Power Systems Conference, 2016. [1.3.4]

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep net-
works. In Proceedings of the 34th International Conference on Machine Learning, 2017.

23 5.115.2.35.3.2

Riccardo Taormina and Stefano Galelli. Deep-learning approach to the detection and
localization of cyber-physical attacks on water distribution systems. Journal of Water

Resources Planning and Management, 144(10), 2018. 2.4 2.4 @ B.1} B.1] F.2) B.4.2]
.53

Riccardo Taormina, Stefano Galelli, Nils Ole Tippenhauer, Elad Salomons, Avi Ostfeld,
Demetrios G. Eliades, Mohsen Aghashahi, Raanju Sundararajan, Mohsen Pourahmadi,
M. Katherine Banks, B. M. Brentan, Enrique Campbell, G. Lima, D. Manzi, D. Ayala-
Cabrera, M. Herrera, I. Montalvo, J. Izquierdo, E. Luvizotto, Sarin E. Chandy, Amin
Rasekh, Zachary A. Barker, Bruce Campbell, M. Ehsan Shafiee, Marcio Giacomoni,
Nikolaos Gatsis, Ahmad Taha, Ahmed A. Abokifa, Kelsey Haddad, Cynthia S. Lo, Pra-
tim Biswas, M. Fayzul K. Pasha, Bijay Kc, Saravanakumar Lakshmanan Somasundaram,
Mashor Housh, and Ziv Ohar. Battle of the attack detection algorithms: Disclosing cy-
ber attacks on water distribution networks. Journal of Water Resources Planning and
Management, 144(8), 2018. 2.2] 4.1]

126

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. Precision
and recall for time series. In Advances in Neural Information Processing Systems, 2018.

Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorobeychik.
Improving robustness of ML classifiers against realizable evasion attacks using conserved
features. In Proceedings of the 28th USENIX Security Symposium, 2019. [5.2.1]

Federico Turrin, Alessandro Erba, Nils Ole Tippenhauer, and Mauro Conti. A statistical
analysis framework for ICS process datasets. In Proceedings of the 2020 Joint Workshop
on CPS&IoT Security and Privacy, 2020. 4.3.2,[6.6.1]

Muhammad Azmi Umer, Aditya Mathur, Khurum Nazir Junejo, and Sridhar Adepu. Gen-
erating invariants using design and data-centric approaches for distributed attack detection.
International Journal of Critical Infrastructure Protection, 28:100341, 2020.

Muhammad Azmi Umer, Khurum Nazir Junejo, Muhammad Taha Jilani, and Aditya P.
Mathur. Machine learning for intrusion detection in industrial control systems: Applica-
tions, challenges, and recommendations. International Journal of Critical Infrastructure
Protection, 38:100516, 2022. [I]

Muaan ur Rehman and Hayretdin Bahsi. Process-aware security monitoring in industrial
control systems: A systematic review and future directions. International Journal of Crit-
ical Infrastructure Protection, 47:100719, 2024. [1}

David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia Va-
lente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg. Limiting the
impact of stealthy attacks on industrial control systems. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016.

Mathew Vermeer, Natalia Kadenko, Michel van Eeten, Carlos Gafan, and Simon Parkin.
Alert alchemy: SOC workflows and decisions in the management of NIDS rules. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications

Security, 2023.3.3] [8.2]

Dennis Wagner, Tobias Michels, Florian CF Schulz, Arjun Nair, Maja Rudolph, and Mar-
ius Kloft. TimeseAD: Benchmarking deep multivariate time-series anomaly detection.
Transactions on Machine Learning Research, 2023. 3.1} 3.1 6.6.1} [8.1]

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on
Graphics, 38(5), 2019. [6.3.2]

Zijie] Wang, Alex Kale, Harsha Nori, Peter Stella, Mark E Nunnally, Duen Horng Chau,
Mihaela Vorvoreanu, Jennifer Wortman Vaughan, and Rich Caruana. Interpretability, then

what? editing machine learning models to reflect human knowledge and values. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Min-

ing, 2022.
Zijie] Wang, Jennifer Wortman Vaughan, Rich Caruana, and Duen Horng Chau. GAM

127

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

coach: Towards interactive and user-centered algorithmic recourse. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems, 2023.

Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. Evaluat-
ing explanation methods for deep learning in security. In Proceedings of the 2020 IEEE
European Symposium on Security and Privacy, 2020. 3.2} [5.2.4]

Feng Wei, Hongda Li, Ziming Zhao, and Hongxin Hu. xNIDS: Explaining deep learning-
based network intrusion detection systems for active intrusion responses. In Proceedings
of the 32nd USENIX Security Symposium, 2023. [1.1]

Joseph Weiss, Rob Stephens, and Nadine Miller. Control system cyber incidents are
real—and current prevention and mitigation strategies are not working. Computer, 55,

2022.

Long Wen, Xinyu Li, Liang Gao, and Yuyan Zhang. A new convolutional neural network-
based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics,

65(7), 2018.

Konrad Wolsing, Lea Thiemt, Christian van Sloun, Eric Wagner, Klaus Wehrle, and Mar-
tin Henze. Can industrial intrusion detection be SIMPLE? In Proceedings of the 27th
European Symposium on Research in Computer Security, 2022. 2.4 [8.1]

Konrad Wolsing, Eric Wagner, Luisa Lux, Klaus Wehrle, and Martin Henze. GeCos re-
placing experts: Generalizable and comprehensible industrial intrusion detection. In Pro-

ceedings of the 34th USENIX Security Symposium, 2025. [1, 2.4] 2.4, [6.5.1,[6.5.2] [6.5.2]
[6.6.116.6.1}[6.7, 8.1} B.1]

Renjie Wu and Eamonn J Keogh. Current time series anomaly detection benchmarks are
flawed and are creating the illusion of progress. IEEE Transactions on Knowledge and

Data Engineering, 35(3), 2021. 3.1, 3.1, @1} [6.6.1]

Renjie Wu, Audrey Der, and Eamonn J. Keogh. When is early classification of time series
meaningful? IEEE Transactions on Knowledge and Data Engineering, 35(3), 2023. [3.1]
8. 1]

Feng Xiao and Jicong Fan. Unsupervised anomaly detection in the presence of missing
values. 37, 2024. [8.2]

Yinglian Xie, V. Sekar, D.A. Maltz, M.K. Reiter, and Hui Zhang. Worm origin identifica-
tion using random moonwalks. In Proceedings of the 2005 IEEE Symposium on Security
and Privacy, 2005.

Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh, Xinyu
Xing, and Gang Wang. CADE: Detecting and explaining concept drift samples for security
applications. In Proceedings of the 30th USENIX Security Symposium, 2021. [3.2]

Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John Zimmerman. Re-examining whether,
why, and how human-Al interaction is uniquely difficult to design. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, 2020.

Wengian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious
correlations in machine learning: A survey. arXiv preprint arXiv:2402.12715, 2024. [6.4]

128

[198]

[199]

[200]

[201]

[202]

[203]

Alberto Zanutto, Benjamin Oliver Shreeve, Karolina Follis, Jeremy Simon Busby, and
Awais Rashid. The shadow warriors: In the no man’s land between industrial control
systems and enterprise I'T systems. In Proceedings of the Thirteenth Symposium on Usable

Privacy and Security, 2017.

Andy K Zhang, Neil Perry, Riya Dulepet, Joey Ji, Celeste Menders, Justin W Lin, Eliot
Jones, Gashon Hussein, Samantha Liu, Donovan Julian Jasper, Pura Peetathawatchai, Ari
Glenn, Vikram Sivashankar, Daniel Zamoshchin, Leo Glikbarg, Derek Askaryar, Haox-
iang Yang, Aolin Zhang, Rishi Alluri, Nathan Tran, Rinnara Sangpisit, Kenny O Ose-
leononmen, Dan Boneh, Daniel E. Ho, and Percy Liang. Cybench: A framework for
evaluating cybersecurity capabilities and risks of language models. In Proceedings of the
Thirteenth International Conference on Learning Representations, 2025. [8.2]

Jindi Zhang, Yang Lou, Jianping Wang, Kui Wu, Kejie Lu, and Xiaohua Jia. Evaluating
adversarial attacks on driving safety in vision-based autonomous vehicles. IEEE Internet
of Things Journal, 9(5), 2022. [I.1]

Xiaodong Zhang, T. Parisini, and M.M. Polycarpou. Sensor bias fault isolation in a class
of nonlinear systems. IEEE Transactions on Automatic Control, 50(3), 2005. [3.2]

Carson Zimmerman. Cybersecurity operations center. The MITRE Corporation, 2014.
[LI[3.3]

Giulio Zizzo, Chris Hankin, Sergio Maffeis, and Kevin Jones. Adversarial attacks on
time-series intrusion detection for industrial control systems. In Proceedings of the 19th
International Conference on Trust, Security and Privacy in Computing and Communica-
tions, 2020. [T} 2.4 2.4 M A.1 H.1 A2 {3.2 432 5.2.11[5.2.21 5.3.1 [6.11 [6.2.2] [6.4]
[6.5.1,[6.6.1]

129

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Comparisons to similar research areas
	1.2 Thesis outline

	2 Background
	2.1 Attacks on industrial control systems (ICS)
	2.2 Datasets for ICS anomaly detection
	2.3 Traditional anomaly detection metrics
	2.4 Models for process-level ICS anomaly detection
	2.5 Attribution methods for machine-learning models

	3 Related work
	3.1 Meta-studies of time-series anomaly detection
	3.2 Explanations in other security-relevant contexts
	3.3 User studies of practitioners in contexts similar to ICS anomaly detection

	4 Comparing models and techniques used for detecting ICS anomalies
	4.1 Introduction
	4.2 Describing the reconstruction-based ICS anomaly detection process
	4.3 Comparing methodologies from prior work
	4.3.1 Comparing models, hyperparameters, and metrics
	4.3.2 Comparing training and data-processing techniques

	4.4 Comparing ML model architectures and datasets for ICS anomaly detection
	4.4.1 Experiment setup
	4.4.2 Optimization results

	4.5 Tuning and evaluating with range-based metrics
	4.5.1 Issues with the point-F1 score
	4.5.2 Range-based performance metrics
	4.5.3 Using range-based metrics to tune detection hyperparameters
	4.5.4 Using range-based metrics to select model hyperparameters

	4.6 Summary

	5 Evaluating attributions for ICS anomaly detection
	5.1 Introduction
	5.2 Methodology
	5.2.1 Datasets used for training and evaluation
	5.2.2 Implementing ICS anomaly detection
	5.2.3 Attribution methods for ICS anomaly detection
	5.2.4 Evaluation metric for attributions: AvgRank

	5.3 Results: Evaluating attributions of ICS anomalies
	5.3.1 Assessing prior attribution strategies
	5.3.2 Selecting attribution methods with a counterfactual benchmark
	5.3.3 Evaluating ML-based attribution methods

	5.4 Results: Factors that affect attribution accuracy
	5.4.1 Effect of detection timing on attributions
	5.4.2 Effect of attack properties on attributions
	5.4.3 Evaluating against stealthier manipulations
	5.4.4 Evaluating ensembles of attribution methods

	5.5 Survey: ICS operator perceptions of attributions
	5.6 Discussion and recommendations
	5.6.1 Recommendations for researchers
	5.6.2 Recommendations for practitioners

	5.7 Summary

	6 CyPRESS: a structurally sparse model for ICS anomaly detection
	6.1 Introduction
	6.2 Model architectures for anomaly detection
	6.2.1 Data description models
	6.2.2 Models used for ICS anomaly detection

	6.3 CyPRESS: Cyber-Physical Representations with Sparse Structures
	6.3.1 Specifying inter-feature relationships
	6.3.2 Learning weights in CyPRESS

	6.4 Analyzing spurious relationships learned by ICS anomaly-detection models
	6.5 Evaluation setup
	6.5.1 Baseline models
	6.5.2 CyPRESS

	6.6 Evaluation results
	6.6.1 Anomaly detection
	6.6.2 Anomaly attribution
	6.6.3 Robustness to stealthy attack strategies

	6.7 Future work and limitations
	6.8 Summary

	7 Examining practitioners' perspectives of ML-based tools for ICS alarms
	7.1 Introduction
	7.2 Participants and methodology
	7.2.1 Participant recruitment and demographics
	7.2.2 Interview methodology
	7.2.3 Analysis methodology
	7.2.4 Ethics
	7.2.5 Limitations

	7.3 Results: Current practices for alarms in ICS
	7.3.1 Systems for raising alarms
	7.3.2 Human tasks in alarm workflows
	7.3.3 Challenges with alarms
	7.3.4 Factors that affect alarm workflows
	7.3.5 Adopting vendor tools in ICS

	7.4 Results: Perceptions of AI
	7.4.1 Conceptual models of AI
	7.4.2 Perceived benefits of adopting AI in ICS
	7.4.3 Perceived barriers to adopting AI in ICS

	7.5 Analysis and recommendations
	7.5.1 Deploying AI in systems for alarms
	7.5.2 Using AI to support alarm workflow tasks
	7.5.3 Navigating barriers to AI adoption

	7.6 Summary

	8 Conclusion
	8.1 Connecting to related work
	8.2 Future work
	8.3 Final summary

	A Survey text used in Chapter 5
	B Interview scripts used in Chapter 7
	C Qualitative codes used in Chapter 7
	Bibliography

